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1 INTRODUCTION 

1.1 TAITA PROJECT 

This thesis is a part of the TAITA project, which is carried out by the Department of 

Geography at the University of Helsinki and funded by the Council of Development Studies 

of the Academy of Finland. The project leader and the coordinator is Professor Petri Pellikka. 

The general objective of the TAITA project is “development of land use change detection 

methodology in the East African highlands applying geographic information systems” 

(Pellikka 2004; Pellikka et al. 2004). The project focuses on various land use change issues in 

Taita Hills applying remote sensing (RS) data and geographical information systems (GIS). 

The main objectives of the project are to develop a cost-effective and practical land use 

change detection methodology and to create a geographic database for the land use and its 

changes in the area (The Taita Project 2006). This thesis focuses on land use issues in terms 

of the road infrastructure and state of road network in the Taita Hills. In addition, remote 

sensing and GIS methodologies and data issues are taken into deep consideration in the 

context of this study. 

 

In 2006, the TAITA project moved on to a second phase, TAITATOO (2006-2009), which 

“focuses on the application of the compiled geographic database of land use and land cover 

for conservation and biodiversity studies” (The Taita Project 2006). The groundwork – the 

base land cover data and the research results – achieved in the first phase of the Taita project 

will be applied to the TAITATOO project. 

1.2 AIMS OF THE STUDY 

This thesis has five principal aims: 

 

1) To describe the present state of the road transport and the road infrastructure in Kenya 

and in the Taita Hills. 

2) To define the meaning of the functional road transport and road infrastructure in 

developing countries. 

3) To study the possibilities of a GIS and remote sensing based methodology in the road 

mapping of the Taita Hills. 

4) To map and update the road infrastructure of the Taita Hills.  

5) To analyse the strengths and weaknesses of the applied GIS and remote sensing based 

methods in the more general context of road mapping in developing countries. 
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The first objective is achieved with background information on Kenya and the Taita Hills: 

their special features, transport history, road administration and road management. The road 

infrastructure of the Taita Hills is considered in terms of its present extent and condition, to 

understand the meaning of the functional road transport for the general development in the 

region. 

 

The second aim is closely related to the first objective. By means of studying the road 

transport and the road infrastructure of Kenya and Taita Hills, the wider purpose is to describe 

generally the meaning of road infrastructure and the status of functional road transport as an 

indicator of development in the developing world. 

 

The third aim is implemented with the experiment and comparison of different methods and 

data at different scales. Various digital and visual techniques are tested to find the best options 

available for the road mapping of the Taita Hills. 

 

The fourth objective is implemented as a consequence of the third objective. The methods 

found to be best for this purpose, and within the limits of the available data, will be applied to 

update the existing road infrastructure data layer of the Taita Hills and to acquire information 

about the theme of the first objective.  

 

The fifth aim is closely related to the third and fourth objective. The results of the Taita Hills 

road mapping are used to discuss generally the possibilities of these methodologies in the road 

mapping of the developing countries. The main questions related the last three objectives are: 

 

The objectives from three to five are strongly methodology-orientated - that is to say, one 

principal aim of this study is to set various remote sensing data and techniques for trial in 

context of the road mapping, to analyse the results with each other and in a wider context. 
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1.3 THE STRUCTURE OF THE THESIS 

 

 

Figure 1. The structure of the thesis. 
 

The thesis is formed around the two major subject matters: the concept of road transport and 

the theoretical framework of RS & GIS methodology. The study is structured into ten main 

chapters (Figure 1). The major subject matters are considered to some extent separately but, 

however, both concepts have common introduction, discussion and conclusions chapters. 

 

The first chapter gives an introduction to the main concepts with the aims of the study and 

with the outline of transport and road transport in the developing world. In addition, the 

potential of the methodology applied to the thesis is discussed generally. Second and third 

chapters form the first part of the thesis. At the beginning, the geographical facts of Kenya 

and the actual study area Taita Hills are presented in the second chapter from the perspective 

of road transport and infrastructure. Road transport of Kenya and the Taita Hills are then 

considered with more detail in chapter three where background information of history, 

development and present state of road transport is given with the personal experiences of the 

author. 

 

Chapters from four to eight constitute the second, methodology-oriented part of the thesis. 

Chapter four presents the theoretical framework of a GIS and RS based methodology in the 
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context of road mapping. Chapter five introduces the characteristics of the data applied to the 

research, and chapter six outlines different methods and analysis techniques that are 

considered step by step from pre-processing and visual interpretation to more sophisticated, 

semi-automated techniques of road extraction. Chapter seven presents briefly the results of the 

pre-processing and analysis on each main step of the procedure, and the accuracy of the 

results is assessed in chapter eight. 

 

Finally, both the main topics of the thesis are discussed in chapter nine. Results of the 

different methods and analyses are considered with experiences in the field, previous studies 

and other relevant literature. In addition, the results are reviewed in the wider context of the 

theoretical framework and road transport in the developing world. The last chapter ten 

concludes the study. 

1.4 TERMINOLOGY AND CENTRAL CONCEPTS 

1.4.1 INFRASTRUCTURE 

Infrastructure is generally defined a set of interconnected structural elements, utilities and 

services – such sectors of economy and society as transport, water and sanitation, power and 

electricity, telecommunications, irrigation, health care, education and other basic services – 

that provide the framework for supporting people’s daily life operations. Furthermore, 

infrastructure is divided as economic infrastructure, also referred as public utilities, and 

physical infrastructure that is the actual set of interconnected, structural elements that provide 

the framework for supporting the entire structure of basic services and public utilities essential 

to the commodity-producing sectors of an economy. Physical infrastructure includes the 

transport networks that are used, as well as the nodes or terminals.  

 

Here, the concept of infrastructure is discussed since road transport, road infrastructure and 

roads are a crucial part of the transport and infrastructure sectors in the developing world, as 

well as in the developed world. Infrastructure, transport and development have complex 

linkages to each other, and this central concept of the thesis is reviewed in chapter 1.4.4. 

1.4.2 TRANSPORT 

“Even in the most remote and least developed parts of inhabited regions, transport in some 

form is a fundamental part of the daily rhythm of life” (Hoyle 1973: 9). Transport – also 

referred as transportation - is a basic human activity and it includes the movement of people, 

goods and information from one place to another. In a wider sense, transport is a context of 
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complex interrelationships that exist between physical environment, patterns of social and 

political activity, and levels of economic development. The purpose of transport is to provide 

accessibility or the ability to make a journey for a specific purpose (Nutley 1998). Transport 

is not consumed for its own sake, but the demand of transport is usually derived, and the main 

motivation in the demand for transport is economic (White & Senior 1983:1). Transport is a 

central dimension of the local, regional and global economies that are reshaping the world. It 

is the major factor interlinked with the environment and with the spatial distribution and 

development of all other forms of economic and social activity (Hoyle & Knowles 1998: 1). 

 

There are two dimensions of transport, space and time (Hawkins 1962). Transport is not only 

a basic human activity but movement in space as well (White & Senior (1983: 1). In terms of 

the space dimension, good transport means cheap movement of goods through space from the 

point of production to the point of consumption, thus having the effect of widening markets 

and economic growth. In the time dimension, markets can be served on a larger scale in big 

economies because capital in the forms of stocks, work in progress and finished goods can be 

turned over more quickly (Hawkins 1962). New modes of transport have dramatically 

changed the time and space dimensions of travelling, providing notably faster connections 

between distant regions, even across national and continental boundaries, than often exist 

between places within the same country or even sub-national region which are far closer 

together in terms of physical distance (Simon 1996: 29). These new trends have led to 

changing geographies of production, distribution and consumption, different delineations of 

the world with differing degrees of integration with, or marginality to, such technologies and 

processes. 

1.4.3 ROAD TRANSPORT, ROAD INFRASTRUCTURE, ROADS 

More than any other mode of transport, road transport has improved the mobility and 

accessibility of the majority of the world’s population (Hoyle & Smith 1998: 32). The field of 

road transport can loosely be divided into infrastructure, vehicles, and operations, and this 

triad of the elements applies to other modes of transport as well. The vehicles generally ride 

on the networks while the operations deal with the control of the system. 

 

The essential features of infrastructure are nodes, linkages and hierarchies (Dickenson et al. 

1996: 234). Road infrastructure is a set of roads (linkages) which are organised as a network 

connecting all areas inhabited and exploited by human beings. The denser the area is 

inhabited and the more intensively used, the denser the road network is. A road is a strip of 
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land, smoothed, paved, or otherwise prepared to allow easy travel, connecting two or more 

destinations (nodes). Roads are arranged in a hierarchy of different categories with different 

attributes based on the importance and the function of a road. Furthermore, according to the 

different categories, roads differ with respect to width, construction and paving material, 

minimum curvature radius and maximum allowed slope. There is a wide variety of road 

hierarchies and categories due to the different functions and characteristics of roads. In 

general, roads are classified into three levels: 

 

1) Highways, national, main or primary roads that connect strategic points (e.g. capital 

and cities). 

2) Departmental, provincial, regional or secondary roads that connect regions with the 

country and are feeder routes that provide the main links between highways, national, 

main or primary roads. 

3) Municipal, local and tertiary roads including urban and rural roads that connect towns 

within one province or provide basic access of rural areas. 

 

On occasion, there is a fourth level of classification, if the “international roads” class is 

included in the categorisation as well. Furthermore, international, national and primary roads 

are sometimes grouped as “trunk roads”, while local and tertiary roads are referred to “minor 

roads”. In addition, there is a wide variety of unclassified roads that include urban and rural 

roads, tracks, paths etc. Term “unclassified” refers to the administration of these roads: the 

roads are not typically managed by the major road sector parties - that deal with the classified 

road network - but lower level or other road administration parties. These roads are often most 

essential at a local level and in daily life to enable people’s and goods’ mobility and to 

provide access to basic services. 

 

The main reason for building a new road is to create or improve road transport between two or 

more nodes and to attain benefits related to certain level of economic and social development 

that generally occurs with the road construction. Roads are built to make accessible new 

settlement areas, services or other functions and to connect such areas to the existing road 

network but also to relieve existing roads from too much traffic. On the other hand, the 

construction of a new road does not inevitably guarantee that development will follow; there 

is no necessary or direct causal relationship between infrastructural improvements and 

development (Simon 1996). On the contrary, previously remote, self-reliant areas and 

communities may suffer if they are integrated into wider systems in which they have marginal 
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status in many ways (ibid.). In addition, if there are not sufficient resources or demand for 

transport or there are other constraints or undeclared motives behind infrastructural 

expansion, the road construction may result in negative impacts. 

 

In this thesis, road transport is mainly reviewed in terms of road infrastructure: the extent, 

condition and meaning of the functional infrastructure for road transport. The term road 

network is used more or less as a synonym for road infrastructure. In addition, vehicles are 

studied to some degree while controlling operations are excluded in the consideration. The 

term road traffic, which refers to the movement of motorised or unmotorised vehicles and 

pedestrians on roads, is used as a synonym for road transport. 

1.4.4 THE INTERRELATIONSHIP BETWEEN INFRASTRUCTURE, TRANSPORT AND 

DEVELOPMENT 

Development, in its economic and social meaning, is a complex, multi-phases series of events 

influenced greatly by infrastructure and transport services. Infrastructure can deliver major 

benefits in economic development and poverty reduction and environmental sustainability 

(World Bank 1994). Furthermore, infrastructure contributes to economic growth and to 

raising the quality of life through reduced costs of production, employment creation and 

improved transport facilities (Kessides 1993). The existence of infrastructure increases the 

productivity of capital and labour, thereby described as an “unpaid factor of production” that 

leads to more efficient economies and to higher returns (ibid: 2). Poverty is reduced through 

the availability of infrastructure facilities, and respectively, individuals are poor when they are 

lacking access to services of the necessary quality. There exists a causality between economic 

development and infrastructure: higher incomes enables people to acquire better infrastructure 

facilities and, respectively, improved infrastructure leads to higher incomes (Kessides 1993: 

18). 

  

In recent decades, the transport field has been dominated by the perspective of the 

modernisation theory which sees transport and technological innovation as important and 

beneficial to the process of economic development (Simon 1996: 57). It is also generally 

proved that infrastructure promotes economic development most effectively in situations 

where there is already a high level of economic activity. The state of transport facilities is 

much poorer in the developing world than in the developed world, where transport 

infrastructure is more extensive, of higher quality and better maintained due to the better 

economic conditions. The developing world has most population of the world, but only a 
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slight proportion of advanced transport facilities (e.g. motor vehicles and paved highways) are 

placed in these countries. Figure 2 shows the unequal distribution of roads between the 

different territories of the world. Territory size shows the proportion of all the roads in the 

world that are located there. Least roads are located in Central Africa, Southeastern Africa 

and Northern Africa. Figure 3 presents the uneven distribution of passenger cars in the world. 

Territory size shows the proportion of all cars in the world that are found there. There are 590 

million cars in the world, that is to say one for every ten people. Fewest cars are in Central 

Africa, Southeastern Africa and in Northern Africa where there are under one passenger car 

per hundred people 

 

Furthermore, appropriate location with good access through the physical infrastructure is a 

key factor for success of economic activities. The core areas of economy, industry, production 

and services are generally more beneficial than the more remote hinterlands. Therefore, 

developed countries have generally an advantage over the developing world and respectively, 

urban areas over the rural regions in the developing countries.  

 

 

Figure 2. The unequal distribution of roads (total 29 million kilometres) in the world (in 2002) 
(Worldmapper 2007). 
 

 

Figure 3. The unequal distribution of passenger cars in the world (Worldmapper 2007). 
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There is a huge mobility gap between the developed and the developing world closely related 

to economic progress, and this can be seen in the comparison between gross national product 

(GNP) per capita and transport facilities and traffic (Owen 1987: 7-12; Simon 1996: 2-6). 

Because the transport technological innovations were initially evolved in the developed world 

and exported rapidly to the different social, economic, political and environmental conditions 

of the developing world, the adoption of these technologies and the impacts of these 

innovations have been very dissimilar from the countries they were developed for (Simon 

1996: 13).  

 

The interrelationships between transport and development within the developing countries 

have been described in a well-known model by Taaffe, Morrill & Gould (Taaffe et al. 1963). 

It is based on the assumption that transport networks are rooted, both physically and 

historically, in seaports. The model has been adapted successfully to the East African 

transport complex (Hoyle 1973; Hoyle 1983). The original model and the adaptation to East 

Africa are shown in Figure 4. The original model represents the parallel evolution of political, 

economic and transport systems within a developing area of the world. An adaptation to East 

Africa shows that the transport networks have gradually evolved from a pre-colonial situation 

of underdevelopment, through a period of external political intervention to the period of 

political independence 

 

The development of the less-developed parts of the world is substantially dependent upon 

transport, in terms of intercontinental transport between the industrial and the developing 

world and regional and local transport within the less-developed regions. The limited 

development of interaction is both a cause and an effect of low levels of economic activity 

and technology (Dickenson et al. 1996: 235). In all developing countries, expansion and 

intensification of the existing transport networks has been a central feature of development 

efforts at different scales. Social and economic development is more probable when facilities 

are of good quality and respectively, the progress of economic development often creates the 

resources for better transport systems. Development, construction and maintenance of road 

infrastructure are prerequisites for rapid economic growth and poverty reduction, since they 

affect production costs, employment creation, access to markets, and investments (Wasike 

2001). Furthermore, infrastructure have an influence on a wide range of consumption, labour 

productivity and wealth issues. In particular, rural roads have a major influence in improving 

marketing opportunities and reducing transaction costs in the developing countries (Kessides 
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1993: 14). Adequate road infrastructure increases improves personal mobility and access to 

services and affects the time allocations and household’s welfare through the time spent for 

such daily operations as firewood and drinking water collection. 

 

 

Figure 4. The original version of the Taaffe, Morrill and Gould model (top) and an adaptation 
to East Africa (bottom) (Taaffe et al. 1963; Hoyle 1973). 
 

The development of the less-developed parts of the world is substantially dependent upon 

transport, in terms of intercontinental transport between the industrial and the developing 

world and regional and local transport within the less-developed regions. The limited 

development of interaction is both a cause and an effect of low levels of economic activity 

and technology (Dickenson et al. 1996: 235). In all developing countries, expansion and 

intensification of the existing transport networks has been a central feature of development 

efforts at both the national and local scales. Social and economic development is more 
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probable when facilities are of good quality and respectively, the progress of economic 

development often creates the resources for better transport systems. Development, 

construction and maintenance of road infrastructure are prerequisites for rapid economic 

growth and poverty reduction, since they affect production costs, employment creation, access 

to markets, and investments (Wasike 2001). Furthermore, infrastructure have an influence on 

a wide range of consumption, labour productivity and wealth issues. In particular, rural roads 

have a major influence in improving marketing opportunities and reducing transaction costs in 

the developing countries (Kessides 1993: 14). Adequate road infrastructure increases 

improves personal mobility and access to services and affects the time allocations and 

household’s welfare through the time spent for such daily operations as firewood and drinking 

water collection. 

1.5 ROAD TRANSPORT IN AFRICA AND SUB-SAHARAN AFRICA 

Before the introduction of railways, roads had been little developed in Africa. Road 

construction was firstly carried out from colonial purposes and roads performed useful 

functions as feeders to the railways. At the same time, however, governments regarded roads 

as a threat to the success of railways (Morgan 1992). The main emphasis remained in the 

railway sector until the 1960s, ever since then road transport has been one of the dominant 

sectors in African transport in terms of demand and investments (Akinyemi 2003). Nowadays, 

road transport is the most widely used means of transport in Africa. 

 

Sub-Saharan Africa (SSA) is the term used to describe those 42 mainland countries and 6 

island nations of the African continent that are not considered as a political part of North 

Africa and are geographically located at least partially south of the Sahara desert (Wikidedia 

2007). However, many countries belong to both regions as shown in Figure 5. In many SSA 

countries, the era since the 1960s has been characterised by the considerable alternations of 

the road networks. The road networks expanded substantially in the 1960s and 1970s when 

new roads were built to open up land for development, and the transition from colonial, 

primary road networks to more sophisticated infrastructure has been remarkable during the 

last few decades in the SSA. Nowadays, road transport is the dominant form of transport in all 

SSA countries where it accounts for close to 90 % of all transport services, and provides 

generally the only access for communities of rural areas, where over 70 % of Africans live 

(Heggie 1995; SSATP 2006a). 
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Figure 5. Sub-Saharan Africa countries and the demarcation line of the southern edge of the 
Sahara desert. 
 

Many of the poorest countries have experienced the highest relative increases of paved road 

networks that also reflects the low base from which they started and the poor quality of 

existing roads, accounting for a high proportion of the growth for the upgrading of existing 

gravel roads (Simon 1996: 19). Traditionally in most African countries road construction has 

been given a higher priority than road maintenance that is often been neglected by the 

ineffective coordination of the road sector. Lack of maintenance has left over 50 % of the 

paved roads in Africa in poor condition and more than 80 % of the unpaved main roads are 

considered just fair (Wasike 2001: 1-2). The status of rural roads is even worse: up to 85 % of 

them are in poor condition with accessibility limited to dry seasons (ibid.). 

 

Paved roads account for less than 17 % (in 1996) in the SSA where also road density per km² 

is generally much lower than those of North Africa, Asia and Latin America (Wasike 2001: 

1). The majority of road infrastructure in the SSA countries has been poorly managed and 

badly maintained with the result that nearly a third of the $170 billion investment has been 

lost through the lack of maintenance (Heggie 1995). The insufficiency and the degradation of 

the road infrastructure have a great influence on the economies of the SSA countries.  
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Lack of road access in the developing countries has been a primary factor in 

underdevelopment (Owen 1987). In Africa, road links tend to be built with former colonial 

powers rather than with other African countries, and transport networks are limited with 

relatively few cross-border connections. Moreover, in many cases road transport between 

neighbouring African countries is restricted due to political difficulties which may close 

borders altogether or at least seriously inhibit the movement of goods. In East Africa, 

however, the inter-state trade flows have ranged at a rather high level, from 8 to 12 % 

(Hodder & Gleave 1992). 

 

Lack of resources for providing even basic level of access and infrastructure, has caused 

serious problems particularly in the rural areas of Africa. Rural roads connect villages and 

farming areas with each other and with market centres. The purpose of rural transport is 

primarily to service agricultural demands and local markets, the everyday needs of people for 

basic levels of mobility and access to services within their own localities (Nutley 1998; Booth 

et al. 2000: 35-48). However, the emphasis has often been placed on the construction and 

maintenance of national, primary and secondary roads and hence, there exists a major gap in 

the rural transport of many African countries. Rural population would benefit more if there 

were an extensive network of rural roads in good condition. In essence, the basic problem of 

many rural areas is the lack of all-weather roads, non-availability of motorised vehicles, 

consequent isolation and poverty. Large populations are impeded from entering markets and 

basic services in the absence of adequate roads, and this is a major obstacle for the economic 

development of those rural areas. 

 

On the other hand, the investments of the road transport sector by both national governments 

and international institutions have increased in recent years. Major infrastructural projects 

(e.g. rehabilitation or construction of new trunk roads) are often funded by means of foreign 

aid loans, grants and technical assistance from the developed countries. Not only are there 

major new highway projects, but the emphasis has shifted from the trunk roads towards the 

expansion of secondary and other minor road connections, particularly in the rural areas 

(Hoyle & Smith 1998: 32-33). More funds have been allocated for the construction and the 

maintenance of rural access roads (Irandu 1996). Hence, a bigger percentage of the population 

in developing countries can benefit from the projects, since not all the investments are 

channelled to a few new highway projects but more comprehensively in terms of the whole 

road infrastructure. In addition, the issues of maintaining the existing network and providing 

wider access to motorised transport have become more essential. However, there is still a lack 
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of maintenance component in many projects, so that newly completed infrastructural 

development is in danger of deteriorating, thus undermining the value of the initial projects 

(Simon 1996: 159-160). 

 

In recent years, there have been a number of efforts for improving the management of the 

road sector in SSA countries (Heggie 1995; Heggie & Vickers 1998; Nyangaga 2001). To 

date, there exists a broad partnership program, The Sub-Saharan Africa Transport Policy 

Program (SSATP), between the member countries of SSA and the regional international 

organisations such as the Common Market for Eastern and Southern Africa (COMECA), the 

World Bank and the United Nations Economic Commission for Africa (UNECA) (SSATP 

2006a). In practise, the collaboration between the members has been implemented in various 

ways such as by introducing the Africa Road Maintenance Initiative (RMI) with its central 

concept of commercialisation (Heggie 1994; Heggie & Vickers 1998), establishing road funds 

in forms of levies on automotive fuel, restructuring road sector governance including the 

private sector to the management of roads and involving of road users in road management 

and financing through the establishment of roads boards (Sylte 1999). 

 

The transition from the formerly strictly and inflexible led, government-controlled road 

transport management and financing to the more flexible, road transport business has begun 

but there are still a number of challenges in the road transport sector of SSA countries, 

particularly in terms of the execution of different programs, initiatives and financing schemes. 

Existing road networks will require tremendous extension and improvement in quality. Above 

all, there are a number of cross-cutting issues related to rural road networks. The rural roads 

of the SSA countries constitute 80 % of the total road network length, carry 20 % of the total 

road transport and provide the basic access to the majority of population in SSA countries 

(SSATP 2006b). Quite commonly, the basic definition and the classification of these roads are 

unclear, and the maintenance, management and financing of these roads are mishandled or 

undervalued. In addition, paved road infrastructure has been overmuch neglected in recent 

time. Paved roads have deteriorated when affected by poor drainage and systematic axle 

overloading of trucks with serious consequences on safety and road deaths (Goldstein & 

Kauffmann 2006). 
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1.6 REMOTE SENSING AND GIS FOR ROAD MAPPING IN THE 

DEVELOPING WORLD 

The current status of available mapping data varies significantly according to different scale 

ranges and between the continents and countries of the world. In Africa, the status of mapping 

is the worst. At the scale range of 1:25 000 only 2.9 %, at 1:50 000 41.4 %, at 1:100 000 21.7 

% and at 1:200 000 89.1 % of the land area is covered by topographic maps (UN Secretariat 

1993, cit. Konecny 2003: 12). If there exist maps, they are usually outdated, inaccurate and in 

analogue form. Therefore, novel, cost-effective methods of mapping are needed for rapid, 

cost-effective and accurate mapping and digital cartographic database building to produce 

new maps, update existing ones and store various geospatial data in digital format. 

 

Many African countries have undergone enormous transformations from former colonies to 

independent, rapidly changing nations. Existing maps are often extremely outdated and of 

poor quality because of the heavy growth of population and urbanisation that have led to 

dramatic changes of land use, natural environment, settlements patterns and transport 

intensities. Land use planning has not always followed general land use policies and planning 

has been fragmented, unsustainable and hindered by bureaucracy and complex land 

ownership issues (Hermunen 2004). In addition, environmental damages and disasters such as 

flooding, drought, bush fires, desertification and the consequence stream of refugees and 

migration have had a great influence on the living conditions of many African countries. 

 

Remote sensing and GIS have great potential in the land use and land cover mapping of the 

developing countries. Remotely sensed data can be used effectively for planning and decision-

making at local, regional, national and international levels. In particular, high resolution 

satellite imagery such as SPOT or Landsat imagery offer a cost-effective source of 

information with synoptic and extensive spatial coverage and spectral information, and with a 

high repetitive cycle to detect temporal changes of land use and land cover, urban 

development and to revise topographic maps (Ottichilo & Khamala 2002). Furthermore, aerial 

photographs – that have conventionally been used for national mapping in Africa – provide a 

platform for accurate, up-to-date surveying, but aerial photography is usually more expensive 

to conduct and it needs more resources for wide area mapping. However, airborne digital 

imagery and more sophisticated techniques for data processing have advanced airborne 

imagery based mapping in the recent years. In addition, very high resolution remote sensing 

data, such as IKONOS imagery, can be used for the production of different kinds of maps and 

to extract vector information, such as roads. In particular, in countries where experience in 
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mapping, aerial photography, data acquisition and handling is not developed and the road 

infrastructure is in need of updating, these data sources provide a rapid and high-quality data 

source for map production (Gianinetto et al. 2004).  However, these data sources are currently 

too expensive to be utilised other than in developed countries. 

 

Remote sensing-based GIS offers an effective approach in Africa to handle, store and utilise 

different kinds of spatial data for such purposes as land administration and environmental 

planning, managing natural resources and protection areas and surveying of the most remote 

areas. As a consequence of the rapid growth and dispersion of population, one of the most 

important functions of GIS in developing countries is the mapping and management of 

infrastructure, especially road infrastructure. Many countries have experienced rapid 

expansion and upgrading of road networks, and the existing map data are out-of-date. Roads 

and road transport have fundamental, supportive functions in many sectors of the economy 

and hence, updated and reliable road data are needed at different levels and for different 

purposes. Reliable road information is needed for transport planning and the effective 

management of the road transport sector itself, since the state of the road infrastructure in 

Africa has deteriorated substantially in recent times with consequences on road safety, 

economic integration and poverty reduction (Goldstein & Kauffmann 2006). In addition, road 

information is essential for land use planning of settlements, services and industry, trade, 

nature conservation, tourism services, etc. 

 

Digitalisation of existing and new road data is of the essence to better manage road 

information in its various purposes. Many African countries are lacking permanent, regularly 

updated and locally managed road databases and that is why in practise large-scale, 

systematic monitoring can only exceptionally be directly based on a pre-existing road 

databases (Fernique 2000). Monitoring and databases of road information are needed at all 

levels of administration and for diverse regional, national and continental purposes. In 

addition, uniform methodologies and data formats, free availability and data sharing are 

needed to better benefit from the potential of GIS. Therefore, Open Source GIS applications 

and map servers would increase the usage of GIS and remotely sensed data - especially in the 

developing countries where resources of mapping are still insufficient and limited in many 

ways. Currently, at least national road data of Africa (at 1:1000000 scale) is available for free 

on the Internet in The Digital Chart of the World Data Server (DCW 1997) (see also Figure 

14). However, these data are insufficient for more detailed purposes of use. Moreover, the 
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server data is very outdated, since the data set was created in 1997 and it is based on the 

sources from several years before the database compilation date. 

 

On the other hand, the implementation of GIS and remote sensing in road mapping has 

several challenges in Africa. First of all, local circumstances and have to be considered 

carefully when planning and building a GIS and remote sensing-based road mapping in an 

African context. Above all, there is an urgent need for surveying basic road network data, 

since the road information on many topographic maps are extremely outdated and road 

infrastructure of changing economies has altered substantially. Unsustainable management of 

land, land ownership issues, informal settlements, urbanisation and migration have resulted in 

unorganised planning and construction of roads and thus, road infrastructure need to mapped 

and updated systematically and regularly. Most of the road infrastructure in Africa is built 

with natural construction materials (e.g. gravel and red laterite soil), and unclassified roads, 

tracks and paths – that form the majority of the road networks in Africa – have not been 

mapped comprehensively yet. In places, roads are covered by dense vegetation (e.g. 

rainforests) or they are poorly distinguished from their surrounding due to their similar 

construction materials. Consequently, high spatial and spectral resolution remote sensing data 

are needed to conduct road mapping at the sufficient level of examination. 

 

Exhaustive remote sensing-based mapping implemented with aerial photography or high 

resolution satellite imagery and ground inventory requires often great and diverse resources of 

skills, hardware, software – that are often insufficient in the developing countries and 

especially in Africa. High or very high resolution remote sensing data are too expensive for 

many purposes as well. In addition, the management and distribution of data can be 

problematic and hindered by ineffective computational capacity and the relatively sparse 

distribution of internet services and web-based mapping operations in African countries. As a 

result, practical and straightforward methods with cost-effective data sources and simple 

means of data management are prerequisites for the effective exploitation of remote sensing 

and GIS in the road mapping of Africa. Local perspectives and education in GIS and remote 

sensing based techniques are needed as well to maintain continuous, repetitive work in the 

field of road mapping. 
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2. STUDY AREA 

2.1 BASIC FEATURES OF KENYA 

2.1.1 PHYSICAL GEOGRAPHY 

Kenya is located in East Africa between the latitudes 5°S-5°N and the longitudes 34°-42°E, 

bordering on five countries, Lake Victoria and Lake Turkana and the Indian Ocean (Figure 6). 

The total area of Kenya is approximately 582 650 km² (CIA 2006) which covers territories 

from coastal plains and low plateaus to Lake Victoria borderlands, and central highlands 

bisected by the Great Rift Valley. From the marginal coastal strip the elevation increases from 

close to sea level to around 1200 m a.s.l. and up to 3000 meters in the highlands of south-west 

Kenya. The highest point of Kenya and also the second highest peak of the Africa continent is 

Mount Kenya (5199 m a.s.l.) sited north of Nairobi near the equator. The largest physical 

regions of Kenya are low plateaus at around 600 m a.s.l. covering 72 % of the total area of 

Kenya (Soja 1968: 6). 

 

 

Figure 6. Location of Kenya. 
 

The climate of East Africa has two particular features: the marginal nature of the rainfall over 

much of the area and the remarkable modifications induced by relief (Morgan 1973: 29-47). 

The climate of Kenya is influenced by two positional factors: the location at the equator and 

in the vicinity of the Indian Ocean. The climate is dominated by the intertropical convergence 
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zone (ITCZ) which produces two intense seasonal rainfalls annually. Furthermore, the 

regional effects of the differences in altitudes affect the general climate patterns. Climate 

varies from tropical along the coast to arid in the inland plateaus and even to arctic-like at the 

highest summits of Mount Kenya. Generally speaking, temperatures decline along the 

increasing elevation from the coastal plains and lowlands to the plateaus and highlands. 

Rainfall is heaviest in the highlands and particularly at the coast in the vicinity of Mombasa 

from where it declines northward and southward (Soja 1968: 6). The driest regions are low 

inland plateaus of large areas of semi-deserts where rainfall is very sparse and uneven 

(Hazlewood 1979: 2). In addition, several small distinct highland regions - such as the Taita 

Hills - obtain higher rainfall rates due to the higher altitudes (Soja 1968: 6). Kenya is 

predominantly a dry country of frequent droughts where most of the land does not regularly 

receive sufficient rainfall. The rainfall may be unreliable even in places where the rainfall on 

average is adequate for cultivation. The uneven distribution of rainfall – wide variations 

between the seasons and the different regions over the country, and around the average from 

year to year - and its overall inadequacy are fundamental to the economy of Kenya. 82 % of 

the area of Kenya is defined as arid and semi-arid lands (ASAL), and land use is greatly 

determined by the influence of land and its agro-ecological potential to various purposes 

(Mwagore 2002). Furthermore, the climate has a considerable effect on the transport 

conditions in Kenya too. Two annual rain seasons make the maintenance of road 

infrastructure a challenging task which needs to be performed regularly and during the 

certain, limited periods of year. 

 

Climate is considered the most important factor on soil formation (Lundgren 1975: 53). In 

East Africa, rainfall has the predominant influence on soil (Morgan 1973: 82) which together 

with other soil forming factors form the typical soils of East Africa. The iron oxides give the 

characteristic red colour to many tropical soils found in Kenya. However, depending on the 

soil formation factors, there are large variations in the characteristics of these latosolic soils of 

Kenya from highly leached and deeply weathered soils lacking of all mineral nutrients to very 

fertile red loams, and coarse soils with rock fragments (Lundgren 1975: 54). Only the 

highlands, Lake Victoria borderlands, the coastal plain and a few isolated enclaves such as the 

Taita Hills have reliable rainfall and fertile soils to sustain a dense agricultural population and 

permanent agriculture (Soja 1968: 8).  

 

There are diverse major vegetation types in Kenya (Trapnell & Langdale-Brown 1961, cit. 

Morgan 1973: 48-69) due to the different regional climate patterns induced by varying 
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topography. Hence, the climate has a strong influence on the vegetation which varies 

significantly along the region and the altitude and that makes the land cover of Kenya a 

mixture of different vegetation types. However, climate, topography and soil are not the only 

key factors determining the current vegetation of Kenya. The very intense activities by human 

land use have modified the vegetation and led to degradation of vegetation and a number of 

critical environmental issues (Virtanen 1989). 

 

Soil erosion, either caused by water or wind, is a major land use problem in Kenya. It causes 

major drawbacks to productive soil in agricultural land use, vegetation cover, water 

infiltration, transport and human settlements. Lundgren (1975: 185) identifies two types of 

areas in East Africa which are very vulnerable to erosion: the semi-arid savanna lands or 

drylands with sparse vegetation, or the cultivated steep slopes of the deforested mountains. 

The process of soil erosion is facilitated by the destruction of vegetation which makes the 

ground susceptible to the eroding forces of water and wind leading to the degradation of land. 

The main causes of land degradation are a consequence of human actions that lead to soil 

erosion and loss of soil productivity (Lundgren 1975: 185). 

 

In summary, the physical features of Kenya are very challenging to the conditions of road 

transport. The climate of two heavy rainy seasons combined with the other factors, varying 

topography, leaching soil, loss of vegetation due to the very intense, unsustainable land use 

and soil erosion, have great influences on the road transport and infrastructure of Kenya, and 

these factors also cause obstacles to the effective development of the road transport sector.  

2.1.2 HUMAN GEOGRAPHY 

Kenya, former known as British East Africa, became independent in 1963 after being a 

colony of Great Britain. The pre-existing era under the domination of colonial policies and 

forces had a great influence on the development of the Kenya. The colonial legacy still exists 

and plays a significant role in many fields and conditions of the current independent state. 

Despite the noteworthy continuity with the past, the period since the independence has also 

seen major changes of the society that have been undergone in many sectors of the economy, 

thus affecting substantially to such issues as the population, land use and transport of Kenya. 

 

Nowadays, the total population of Kenya is approximately 34 million (2005 estimation), and 

the average annual population growth rate is 2.6 (2005 estimation) % (CIA 2006). The 

average population density is 56.1 inhabitants per km² (in 2003) (Statistics Finland 2006). 
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Approximately 42 % of all inhabitants live in urban areas and the estimation of the average 

annual growth rate of urban population (in 2000-2005) is 4.4 % (ibid.). The capital and the 

main hub of Kenya and East Africa is Nairobi, and the second biggest city is Mombasa which 

is the most important seaport in East Africa. Kenya is becoming more and more urbanised, 

but still having the majority of its population living in rural areas. Therefore, the management 

of rural transport is a central issue at the road transport sector of Kenya. 

 

The Gross Domestic Product (GDP) of Kenya, on a purchasing power parity basis per capita, 

is 1100 USD (2005 estimation), and Kenya was ranked 22nd poorest country in the world on  

GDP per capita (CIA 2006). The Figure 7 shows that services encompass majority (65.1 %) 

while agriculture and industry sectors both carry approximately one-thirds of the total GPD. 

Merely a small part of Kenya’s land area is suitable for permanent agriculture or intensive 

animal husbandry. At the same time, as much as 75 % of the labour force works within the 

agriculture sector (CIA 2006) that evidently represents the ineffective and small-scale nature 

of the agricultural activities. Moreover, the informal sector accounts for a great share of the 

economy. In consequence, the unemployment rate is 40 % (2001 estimation) (CIA 2006) that 

is a result of the distortion of the economy. 

 

Industry
19%

Agriculture
16%

Services
65%

 

Figure 7. The composition of GPD in Kenya by sector in 2004 (CIA 2006). 
 

The disparities of living standard between the various regions of Kenya, in many cases 

between rural and urban areas, are great and wealth is accumulated to a minority of 

inhabitants - to the small elite usually located in urban areas. Meanwhile, droughts, famine 

and diseases combined with the effects of general poverty are often serious threats especially 

to the inhabitants of rural areas. The inhabitants of the most remote, peripheral regions often 

lack business and industry, resources and proper infrastructure, and they also have the hardest 

physical conditions for agricultural activities. Thus, development of the general conditions of 
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rural areas such as local and regional infrastructure is a fundamental task for the economic 

and social development. Functional transport connections is a prerequisite for the trade of 

groceries, raw materials, manufactured goods and merchandise which are either imported to 

or exported from the rural areas. Even in the most remote, highly self-sufficient communities 

of small-scale production, the functional transport connections are usually needed to ensure 

the marketing to the local business centres. 

 

In general, the economy of Kenya has been more successful than many other countries of East 

Africa. Nowadays, Kenya is the regional hub for trade and finance, and the export and import 

values are clearly higher than its neighbouring countries have. A significant part of the export 

in Kenya is directed at other East African countries and to UK and US (CIA 2006). 

Respectively, most merchandise is imported from outside Africa, from Asia and other 

continents. However, a number of obstacles to the economy such as the inefficiency of the 

governance and the practise of corruption since independence have come in for great 

criticism. It is therefore essential to promote the factors of external trade such as to improve 

the regional and international transport connections. 

2.2 BASIC FEATURES OF THE TAITA HILLS 

2.2.1 PHYSICAL GEOGRAPHY 

The Taita Hills (03º20’S 38º20’E) are located in Taita Taveta District (17 000 km²) of Coast 

Province, in south-east Kenya (Figure 8). The Taita Hills cover an area of approximately 1000 

km², and together with Sagala Hills and Kasigau they form the northernmost part of the 

Eastern Arc Mountain chain in East Africa. The average altitude of the Taita Hills is 1500 

meters, the highest point being Vuria at 2208 m a.s.l. and the surrounding Tsavo plains at 

about 700 m a.s.l. 

 

The climate of the Taita Hills varies substantially with altitude and aspect. The rainfall pattern 

in the region is bimodal with two intense rainy seasons, the long rains occurring between 

March and May and the short rains between October to December. Figure 9 shows the rainfall 

pattern at two rainfall stations of the Taita Hills region. The mean annual rainfall varies from 

500 mm in the lowlands to over 1400 mm in the highlands. The lowlands belong to the ASAL 

areas experiencing a maximum of 450 to 700 mm precipitation per year (Vogt & 

Wiesenhuetter 2000: 12). In addition, the north and north-west facing slopes of the Taita Hills 

are relatively dry due to their location in the so-called rain shadow region of the moisture-

laden south-east trade winds (Krhoda 1998: 27). The temperature range is between 16°C and 
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30°C and the average temperature of the district is 24°C (Krhoda 1998: 27; Taita Taveta 

district development plan 2002-2008… s.a.: 8). 

 

The Taita Hills region has varying land cover and land use patterns due to the different 

physical conditions and distribution of population as well. There are few indigenous forest 

fragments and patches in the region which have rich and unique biodiversity including several 

endemic species of birds, plants and insects. The largest forest remnants are Mbololo, 

Ngangao and Chawia located on the highest peaks of the hills. The highlands are generally 

characterised by woodland, dry forests, whereas the lowlands are mainly covered by wooded 

bushland, grasslands, riverine forests and swamps (Vogt & Wiesenhuetter 2000: 36). The 

highlands are mostly verdant and abundant in vegetation, while the lowlands are drier and 

more sparsely vegetated. 

 

 

Figure 8. Location of the Taita Hills. 
 

In the highlands the dominant soils are well drained, moderately deep and highly fertile while 

the adjacent foothills have generally soils of lower fertility (Krhoda 1998: 27). In particular, 

the soils of the lowlands and the steep slopes of the hills are sensitive to soil erosion with their 
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high permeability and low water holding capacity (Vogt & Wiesenhuetter 2000: 23). In 

addition, such factors as the climate of heavy seasonal rainfalls, varying topography with 

steep slopes, degradation of vegetation, intense land use, population growth and spreading 

settlements have led to the rampant problem of soil erosion in the Taita Hills region. Gully 

erosion is a serious hazard in the Taita Hills region damaging agriculture and infrastructure 

such as roads and settlements and causing siltation of rivers and reservoirs (Hermunen et al. 

2004; Sirviö et al. 2004). Erosion sites have increased in the Taita Hills region in the recent 

decades, especially in a number of lowland areas adjacent to the hills (Masalin 2005). 
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Figure 9. Average monthly rainfall in period 1986 - 2003 in Voi (560 m a.s.l.) and in Mgange 
(1770 m a.s.l.) (Kenya Meteorological Department data 2004, modified). 
 

2.2.2 HUMAN GEOGRAPHY 

The Taita Hills have a strategic location, and this has had a great importance on the 

development of the region. The Taita Hills were initially located in the vicinity of early 

coastal trade centres (e.g. Mombasa, Malindi and Kilifi) and by traditional caravan trails and 

explorer's routes (Soja 1968: 27-28). Thereafter, the alignment of Kenya-Uganda railway 

(1895-1902) and the parallel main road from Mombasa to Kibwezi and further to Nairobi 

followed approximately these caravan trails with a number of modifications (Molesworth 

1899, cit. Morgan 1973: 344-345). Furthermore, the construction of the railway from Voi to 

Taveta (1918) for strategic purposes during the war and the road (1920) paralleling this 

branch line assisted the development of the region (Soja 1968: 27-32). 
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Morgan (1973: 346) describes the remarkable parallelism of railways, main roads and electric 

power lines - the three important services to industry and trade - as “a spine of economic 

development” in Kenya which has created a certain bulk of urban centres along the line from 

the coast to Nairobi. The administrative headquarters of the Taita Taveta District is Wundanyi 

located in the core of the highlands and being the centre of the agricultural area. The biggest 

urban centre and market town of the district is Voi, lying on the edge of the Tsavo East 

National Park, in the lowlands approximately 30 km east from Wundanyi by “the spine of 

economic development". Voi has attracted people for a long time from the Taita Hills and its 

surrounding plains to look for a job at the railway or sisal estates (Hurskainen 2005: 31). Voi 

has logistically a central position at the junction of Nairobi-Mombasa and Voi-Taveta-Moshi 

railway lines, and at the crossroads of the Nairobi-Mombasa highway and Voi-Taveta main 

road, also leading to Wundanyi. The railway traffic along the Voi-Taveta-Moshi branch line 

has diminished substantially in recent decades, but the other major routes still have an 

important role in local, regional and international transport of manufactures, agricultural 

products and people. 

 

The total population of Taita Taveta District is approximately 260 000 (in 2002), the average 

density 40 people per km² and the annual population growth rate 1.7 % (Taita Taveta district 

development plan 2002-2008… s.a.: 8). However, the average density rate is misleading, 

since there are great variations in the population distribution of the district and people are 

distributed unequally among the different divisions of the district (Table 1). Majority of 

people live in the agricultural high potential areas of the Taita Hills and Taveta sub-district, at 

the footslopes of the hills and in the urban centres (Krhoda 1998: 47). The least occupied 

areas are located in the lowlands with inadequate rainfall, poor infrastructure and limited 

activities (Taita Taveta district development plan 2002-2008… s.a.: 7). The Tsavo National 

Parks (Tsavo East and Tsavo West), that count over half of the total area of the district, are 

almost uninhabited restriction areas for spreading settlements. 

 

The business hub Voi is the largest city of Taita Taveta with approximately 33 000 

inhabitants, and district's capital Wundanyi has a population of 4000 (1999 census) (Republic 

of Kenya 2001). Despite the strategic location of the Taita Hills and the major urban centres 

of Voi and Wundanyi, the Taita Hills is generally defined a rural region due to its agricultural-

oriented livelihoods and rural population living in villages and dispersed by their small farms. 

The majority of the district’s population is rural and agriculture contributes 95 % of 

household incomes (Taita Taveta district development plan 2002-2008… s.a.: 8-9). A number 
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of mountainous areas have to some extent peripheral status and they are seen as remote and 

poorly accessible by transport (Krhoda 1998: 38). 

 

Table 1. Population densities and distribution by division in Taita Taveta District in 2002 
(Taita Taveta district development plan 2002-2008… s.a.: 7, modified). 

Division Area (km²) Population Density

Wundanyi 701.9 57 706 82.2

Mwatate 1766.1 59 386 33.6

Voi 2975.0 57 486 19.3

Tausa 318.9 21 361 66.9

Mwambirwa 43.3 5191 119.8

Taveta 654.4 55880 86.6

Tsavo National Parks 10680.0 2879 -

Total 16959.0 259 889 40.3  
 

The agricultural high potential areas are essential for productive agriculture in the Taita Hills 

(Krhoda 1998). Morgan (1973: 345) states that the Taita Hills is as “an oasis of water and 

population”. Indeed, the highlands and footslopes have abundant resources and favourable 

agro-ecological conditions for intensive agriculture and consequently the region is densely 

populated. Horticulture and agriculture are the main economic activities and source of income 

in the hills, and the district is one of the major suppliers of vegetables and fruits to Mombasa 

(Krhoda 1998: 14). Population pressure in the highlands has resulted in the expansion of 

agriculture and people into the lowlands, which are agriculturally more marginal regions 

(Soini 2005: 4). 

 

The Taita Hills region has a poor physical infrastructure comprising of basic services and 

public facilities essential to the economy and the rural population of the region. Water and 

sanitation infrastructure, health services and educational facilities are insufficient and 

unequally distributed. In addition to the disadvantages of the poor road infrastructure, very 

few telephone services and post offices, power failures as well as a lack of electrification and 

incomplete mobile phone network – particularly in the rural areas of the highlands – impede 

efficient communication within the district and with the outside world. Road transport and 

road infrastructure of the Taita Hills region are considered with more detail in Chapter 3.2. 
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3. ROAD TRANSPORT IN KENYA AND IN THE TAITA HILLS 

3.1 ROAD TRANSPORT IN KENYA 

3.1.1 THE INFLUENCE OF COLONIALISM 

The implementation of the different modes of transport has greatly influenced the 

development of Kenya. It is stated that modern Kenya was created by the railway (Hazlewood 

1979: 1). Indeed, mainly the construction of railways facilitated the development of Kenya 

and improved the connections between the hinterlands and the coastal seaports, from where 

the raw materials and goods were able to be exported to the mother country. The expansion of 

the railways also consolidated the ground of British administration in Kenya (Mäkelä 1989: 

143). Railways were built and expanded solely for colonial purpose of the monarchy but this 

had a great influence on the regional structure, general development and expansion of other 

transport networks - particularly the road network as well. The railways were well exploited 

in the passenger services but particularly in the freight transport where they contributed the 

major part of the total revenue (Hazlewood 1979: 96). Afterwards, the predominant role of the 

railways has been replaced by the development of the road transport. 

 

The development heritage from the colonialism has played a major role in the emergence of 

the current road transport system in Kenya. Soja (1968) describes the early development of 

the road transport network in Kenya, emphasising the meaning of the past colonial purposes, 

the railway construction and the location of the seaports on the coast. The road network was 

designed and expanded due to the colonial needs in order to serve primarily the interest of the 

mother country rather than the needs of the indigenous peoples of Kenya. Roads were built as 

feeders to the railways to facilitate the stream of export to the mother country. Furthermore, 

roads were constructed to serve the growing areas of European settlements and to provide 

additional administrative connections (Soja 1968: 31). However, the British administration 

generally favoured rail transport at the cost of road transport (Mäkelä 1989: 145). At that 

time, roads existed over most of the country and the total road network was expanded but the 

road maintenance was often neglected and seen subsidiary to that of rail transport and 

especially at the cost of rural roads. As a result, the road network of the colonial legacy was 

relatively extensive and outward oriented at international scale but irregular and insufficient 

in terms of the regional and local needs (Mäkelä 1989: 143-152). 
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3.1.2 SHIFT OF THE ROAD POLICY FRAMEWORK 

The road transport of Kenya was little developed before the 1960s. Since independence in 

1963, the road transport has changed significantly in Kenya, in terms of both road policy 

framework and the physical infrastructure itself. An extensive review of the post-

independence roads infrastructure policies in Kenya is presented by Wasike (2001) who 

reviews the trends in Kenyan road policy framework under the three different phases: the first 

era (1963-1972) of rapid economic growth, the second period (1973-1982) of continuous 

decline and the third and fourth decades (1982 to now) of structural adjustment and reforms. 

Since independence, there has been a major shift of the road infrastructure development 

towards the more privatised, decentralised road sector management through more public-

private partnerships and with more commercialised policies and purposes. There are several 

benefits of privatising road contractors: private firms build highways faster and more 

efficiently than government agencies, users are more likely to accept to pay for roads owned 

by the private sector, and franchising should prevent the implementation of inadequate 

building plans (Wasike 2001: 10). Moreover, decentralisation is considered essential to 

minimise costs and to optimise road service delivery (ibid: 7).  

 

On the other hand, the shift of the road policies has also had negative effects, since the 

institutional framework of the road transport sector has fragmented among different 

governmental ministries, departments, levels of government and other parties. Hermunen 

(2004) emphasises the issues of the whole current land use policy and administration of 

Kenya. The present national land use policy and administrative system of Kenya inherited 

from the colonial era is still heavily centralised, deeply sectoral and bureaucratic. The poor 

performance of the road infrastructure management may be a consequence of the fragmented 

nature of the institutional framework for the road sector, as it is difficult to coordinate the 

responsibilities, activities and financial requirements of the various road agencies (Wasike 

2001: 42). Therefore, there is a need for more intensive collaboration between the distinct 

administrative bodies of the road sector in order to rationalise the management of the road 

transport in Kenya. 

 

To date, there have been a number of efforts and activities to strengthen the institutional 

framework of road sector and to rationalise the management of roads in Kenya. With the 

Africa Road Maintenance Initiative (RMI) by UNECA, World Bank SSATP and the 

Government of Kenya the Road Maintenance Levy Fund (RMLF) Act was enacted in 1992 to 

promote the funding of the maintenance of the road network, and the Kenya Roads Board 
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(KRB) was established in 1999 to oversee and coordinate the development, rehabilitation and 

maintenance operations and activities of the road network in Kenya undertaken by various 

road agencies. KRB is the administering body of the funds derived from the RMLF and any 

other sources and it distributes funds to different road agencies, among others to District Road 

Committees (DRC). KRB involves individual and corporate members from both the private 

and public sectors of the economy. Generally speaking, the actual planning, construction and 

development of roads takes places at the national level, whereas the district level (mainly 

DRCs) is involved in routine maintenance of the road infrastructure. 

 

In addition, the idea of using labour-intensive construction methods (Simon 1996; ILO 2006b) 

rather than conventional labour-replacing machinery has been applied in the road sector. A 

number of labour-based road maintenance programmes – such as Rural Access Roads 

Programme (RARP), Minor Roads Programme (MRP) and Roads 2000 have been 

implemented with the involvement of the International Labour Organization (ILO) (de Leen 

1980; ILO 2006a). Major construction projects have been undertaken by domestic contractors 

and moreover, foreign parties of financing (e.g. EU, Danida) have been participated in the 

management of the road sector in Kenya. China Road & Bridge Corporation is involved in 

various road projects in Kenya, such as the rehabilitation of the Nairobi-Mombasa highway 

and the improvement of Mwatate-Taveta main road (Figure 10). 

 

 

Figure 10. The improvement of Mwatate–Taveta road project (Keskinen 2004). 
 

The administering agencies and the road classification of Kenya are presented in Table 2. At 

present, routine maintenance of classified trunk road network is still undertaken by the Roads 
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Department of Ministry of Roads and Public Works (MRPW). Other major implementing 

agencies in the road sector are e.g. DRCs, City and County Councils and Kenya Wildlife 

Service (KWS) which are responsible for the maintenance of rural road network and the 

unclassified roads.  

 

Table 2. The road classification and the administering agencies of Kenya (KRB 2006) 
Classified road network
Trunk road network (Class A, B, C) MRPW

International trunk roads (A)
National trunk roads (B)
Primary roads (C)

Rural road network (Class C, D and others) DRC
Secondary roads (D)
Minor roads (E)
Special purpose roads

Unclassified road network
Urban roads Municipal Authorities 

(City and Municipal Councils)
Rural roads and tracks County Councils
National park and game reserve roads KWS
Forest roads Forest Department  

 

3.1.3 PRESENT STATE OF THE ROAD TRANSPORT 

Nowadays, road transport is the dominant transport system in Kenya, and it has a substantial 

influence on the nation’s economy. The road transport sub-sector accounts for approximately 

34 % share of the total annual output of the transport services (in 1998), which is the highest 

contribution to national output among all transport modes (Wasike 2001). Moreover, the road 

transport contributes over 80 % of the country’s total passenger and 76 % of freight traffic 

(GoK 2002). 

 

The road infrastructure of Kenya is fairly well developed in terms of its extent but not of its 

operation condition that has suffered from inadequate maintenance and the disjointed 

institutional framework of the road sector. In the recent decades resources for the maintenance 

tasks have been declining though more financial resources have been allocated to the 

construction of rural and urban road infrastructure (Irandu 1996). Since the replacement of 

railway traffic and the independence, the expansion of road network has been rapid, mainly 

focusing on the construction of the classified roads. The main paved road network more than 

doubled from 4 480 km to 8 940 km between 1977 and 1999 (Figure 11), and the total length 

of the classified network increased from 50 400 to 63 000 km (Wasike 2001: 41). At the same 
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time maintenance tasks have been undervalued and above all, the management of the rural 

road network has been neglected in many ways. The emphasis was firstly placed on the 

upgrading of the main trunk road network but since the early 1970s, more emphasis has 

shifted towards the construction of secondary, minor and rural access roads. However, the 

rural road network of Kenya is still inadequate in coverage and quality, that has several 

negative impacts on marginal areas of rural regions such as low productivity, high access 

costs to the market and poor management of natural resources (Obare et al. 2003; Mwakubo 

et al. 2004).  
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Figure 11. Development of the paved road network in Kenya 1977-1999 (Wasike 2001: 41). 
 

In general, the extent and the state of road network can be described with various absolute and 

relative indicators. There is varying statistical information about the classified road network 

of Kenya (Heggie 1995; Wasike 2001; CIA 2006; IRF 2006; KRB 2006). In particular, no 

reliable data exists of the unclassified rural road networks.  

 

The road transport sector in Kenya comprises 899 000 registered vehicles of which over 38 

000 are public service matatus (a pickup truck or minibus used as share taxis) (Republic of 

Kenya 2003b: 19), and a road network of 177 500 km length (in 2004), of which the classified 

road network covers 63 000 km, representing approximately 35 % of the total road network 

(CIA 2006). Main unpaved (gravel and earth roads) roads cover 78 % of the classified roads 

while tarmac roads encompass the minority of the total classified road network (ibid.). The 

composition of the total road network and the unclassified road network data are shown in 

Figures 12 and 13. All roads except the unclassified roads form the classified road network. 
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Figure 12. Composition of the total road network in Kenya (KRB 2006). 
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Figure 13. Composition of the unclassified road network in Kenya (KRB 2006). 
 

Road density is a road-to-population ratio, a relative development indicator representing the 

average potential access or potential use of transport. In 1995, road density of the classified 

road network was 2.3 (1000 km per one million persons) in Kenya, which is similar to most 

SSA countries where the average value is 2.9 (World Bank 2000: 256). By 2004, the road 

density of Kenya had fallen to 2.0. Road density of the classified road network per land area 

has increased from 0.09 (in 1977) to 0.11 km / km² (in 2004). However, there is great 

variation in the road density rates of different areas in Kenya and roads are generally 

concentrated in the areas of high population and economic activity in Kenya while many 

rural, more peripheral regions are lacking proper main roads. The Figure 14 demonstrates the 

unequal distribution of roads in Kenya based on Digital Chart of the World Server data (DCW 

2007). Notice that the very simple road classification of the source data differs from the Table 

2 road classification which is the formal classification in place in Kenya. In particular, 
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northern, eastern and southern parts of the country have inadequate road networks, tarmac 

roads and badly maintained road infrastructure (Republic of Kenya 2003b) 

 

 

Figure 14. The main road network of Kenya based on the Digital Chart of the World Server 
database 1991/1992 data. 
 

The primary problem of the road sector in Kenya is not the quantity but the quality of the 

infrastructure: there exists a relatively extensive road network in places but it has a poor state, 

since conditions on the main roads have deteriorated significantly due to the heavy growth of 

road transport and due to the lack of periodic, routine maintenance. Buys et al. (2006) 

describe the state of main road networks in SSA countries with a road transport quality 

indicator, and the index value of Kenya is 16.3, normalised to 100 for the highest-quality road 

transport in South Africa. A large proportion of the road network in Kenya is in poor 

condition, and this is a major constraint to economic and social development. The bad 

condition of the road infrastructure has an influence on the whole transport, which means that 

rapid movement of vehicles and the effectiveness of transport connections are often impeded 

if there exists a poor infrastructure of roads. The proportion of paved roads has stagnated at 

approximately 12 % of all classified roads since the 1980s (IRF 2006), and only a minority 

these roads are in good condition. 32 % of paved roads were in good condition in 1989 

(World Bank 2000: 257) and respectively, 66 % of unpaved roads were of good quality, but 

conditions on these roads, particularly earth roads, can change quickly over time during 
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intense rains. In 2002, MRPW estimated that only 17 % of the classified road network were in 

good condition, 39 % in fair condition due to periodic maintenance, 27 % in poor condition 

requiring rehabilitation, and the remaining 16 % was failed and required reconstruction (KRB 

2006). However, these numbers represent only a small proportion of the total road network, 

since unclassified roads comprise the majority of all roads in Kenya.  

 

Unclassified roads and especially rural roads are generally in even poorer condition than 

classified roads. The maintenance of these roads has been left to poorly funded and/or 

ineffectively coordinated local authorities, and the rural road network is often neglected in the 

prioritisation, whereas the classified main roads are seen as more important by administrative 

and financier parties and in terms of national and international interest. In 2005, 58 % of all 

inhabitants of Kenya were classified as rural (Statistics Finland 2006), indicating that rural 

roads are directly more relevant to the majority of the population by providing access to 

markets and basic services and increasing the mobility of rural people. 98 % of the rural 

people do not own their own motor vehicles and over 85 % of the movements in the rural 

areas usually take place of the road using tracks and paths (Republic of Kenya 2003a: 9).  

 

On the one hand, rural roads are often more important in terms of their non-motorised 

meaning to increase accessibility and mobility of rural people by supplementing motorised 

transport with non-motorised modes of road transport. Improving paths or tracks can ease the 

transport burden of rural people and reduce time spent on water and firewood collection. On 

the other hand, the development of the motorised and public road transport facilities in the 

rural areas and the maintenance of the rural road network are also important factors to 

improve the food security, cheaper health care and educational services and to generate 

employment (Irandu 1996).  

3.2 ROAD TRANSPORT IN THE TAITA HILLS 

3.2.1 CONSTRUCTION AND EXTENT OF THE ROAD NETWORK 

The Taita Hills have an extensive road infrastructure which is, however, seasonally and in 

certain places in poor condition. The great scope of the network and the poor state of the 

infrastructure have several effects on the development of the region, that are discussed later in 

this chapter. Taita Taveta District has a total classified road network of 955 km (in 2001) 

(Taita Taveta District Development Plan 2002-2008… s.a.: 11). The classified road network 

of the Taita Hills comprises of international trunk roads, and there are also a number of 

primary, secondary and minor roads connecting rural access roads and tracks to higher class 
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roads and linking different agriculture areas and market centres to each other. Figure 15 

shows the road network of the Taita Hills region based on Survey of Kenya (1991) 

topographic map data (Broberg & Keskinen 2004). Notice that the road classification differs 

from the Table 2 road classification.  

 

The road density rates of the Taita Taveta District are 0.06 km / km² and 3.7 (1000 km per 1 

million persons) in 2001. Hence, there are almost half less roads per km² but nearly double the 

amount of roads per population in the district than on average in Kenya (equivalent rates 0.11 

and 2.0 in 2004). These ratios indicate, that the extent of the road network is generally lower 

in the district – with great variations - but the potential access and use of roads is higher than 

the national level. The Taita Hills is a highly mobilised periphery within the Nairobi-

Mombasa core region (Krhoda 1998: 37). Roads are concentrated in areas of high population 

density and economic activities: towns, market places and other urban areas, and important 

agriculture regions. Fewer roads are situated in less populated and less productive lowland 

areas, remote places, conservation areas and areas of extremely difficult topography. By 2008, 

the road density per land area is estimated to increase to 0.10 and the road density per 

population to 6.2 in Taita Taveta District. It should be noticed that these rates involve only the 

classified road network. 

 

 

Figure 15. Road network of the Taita Hills. The SPOT 2003 image is shown in the 
background. 
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In recent decades, there has been a heavy growth of population that has led to increased 

population density, dispersed distribution of the inhabitants and dynamic chances of land use 

patterns in the Taita Hills region. Under the circumstances of the intensive agriculture and 

high population pressure, and despite the hard physical geography for road construction - 

difficult rolling terrain of steep slopes and great altitude variations - roads have been built 

extensively all around the region. Hence, the current road infrastructure reaches to almost 

every corner of the Taita Hills, with the exception of just the highest and steepest hillsides, 

dense indigenous forest areas and the most remote parts of the region. Roads have been 

constructed - or paths and tracks have been formed - to more remote places that have earlier 

remained untouched but then, along the road construction become prone to such human 

influences as firewood collection, hunting and settlement building. This has led to degradation 

of the land and loss of vegetation and biodiversity of ecosystems. In addition, road 

construction has encouraged gully erosion problems by laying bare surfaces open to erosion 

that can damage productive land of agriculture or grazing nearby the road construction site 

and also the road itself. Figure 16 shows a gully erosion site along the north side slopes of the 

Taita Hills. Gully erosion has taken place and damaged the earth road running from Werugha 

to Kishushe. Most of the erosion takes places along the roads and tracks cutting across very 

steep slopes of the Taita Hills, and this occasionally makes road construction hazardous to the 

sustainable land use of the area (Muya & Gicheru 2005: 6).  

 

 

Figure 16. Gully erosion site along the road (Keskinen 2005). 
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3.2.2 MAINTENANCE AND CONDITION OF THE INFRASTRUCTURE 

The road infrastructure of the Taita Hills is to some extent of poor quality and in need of 

routine, seasonal maintenance operations. The Mombasa-Nairobi highway and the main road 

from Mwatate to Wundanyi and the road section between Voi and Mwatate are the only 

tarmac roads in Taita Taveta District. The majority of roads are unpaved, either gravel or 

earth roads (Figure 17), and these roads are more vulnerable to damage caused by heavy rains, 

soil erosion and traffic of heavy, overloaded vehicles. In total, there were 152 km of tarmac 

roads, 311 km of gravel roads and 955 km of earth roads in the district in 2001 (Taita Taveta 

District Development Plan 2002-2008… s.a.: 11). The poor state of the road infrastructure is a 

consequence of hard physical features of the region, population growth and dispersion into 

sensitive areas, increased quantities of the road transport and lack of financial resources for 

road maintenance. In addition, there is a need for tighter supervision and there should a more 

favourable regime for locally based contracting and local purchasing of materials for road 

maintenance operations (Danida 2004). 

 

Earth 
roads
51%

Tarmac 
roads
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Figure 17. Composition of the classified road network in Taita Taveta District in 2001 (Taita 
Taveta District Development Plan 2002-2008… s.a.: 11). 
 

Occasionally, many roads in the district become in poor condition and even impassable by 

motor vehicles. In addition to the hard conditions for road construction in the Taita Hills, 

conditions for road maintenance are very challenging as well. Hilly topography, intensive 

land use on the slopes, serious gully erosion problem in places and seasonal, heavy rainfalls 

together with leaching soil and degradation of vegetation make the maintenance of the road 

infrastructure a very difficult task. The whole concept of the road maintenance is troubled by 

the lack of financial allocation, particularly in terms of rural roads and other roads that do not 

take the first priority in the national or district level road policies. These roads do not carry the 
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heaviest transport quantities or are the busiest in traffic volume either but, however, basic 

access and mobility of local people by non-motorised means of transport or by matatus should 

be ensured with the regular maintenance operations.  

 

Because of the varying physical features of the Taita Hills, roads differ from each other in 

their nature of construction material and conditions, according to where they run and how 

they have been constructed and maintained. In the highlands, roads have been generally built 

to snake among the intensive agriculture land of terraced fields, small settlements and 

vegetation areas. On the deep hillsides roads follow a winding, serpentine routes of great 

variation in gradient - that makes them prone to soil erosion. Road paths are usually relatively 

narrow without or with marginal roadsides so that a road path may be bordered by adjacent 

steep descents or craggy cliffs. The majority of the roads are earth roads composed of either 

reddish or brownish laterite sand or bright gravel. A few very steepest sections have been 

paved either with tarmac or concrete surface to allow motor vehicles to better deal with the 

tough gradient, especially during the intense rains (Figure 18). Hence, roads in the highlands 

are generally clearly defined with their relatively sharp boundaries in terms of the different 

building material from the adjacent, vegetated, land use and the great variation in gradient.  

 

 

Figure 18. A steep road section paved with concrete surface (Keskinen 2004). 
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Meanwhile, borders of the roads in the lowlands are often less clearly defined. Composition 

of these roads is usually very similar to the adjacent land use and the road paths are not as 

strictly defined by the gradient as on the steep slopes of the Taita Hills. The majority of these 

roads are composed of bright red, reddish or red-brownish laterite sand. Roads run among 

settlements, arid agriculture land of sparsely vegetated fields, bare ground, erosion sites, and 

they are not as well "organised" to run by the gradient as on the hillsides of the Taita Hills. 

 

Soil erosion and road infrastructure have a great influence on each other in the Taita Hills 

region. They have a mutual interrelationship that has an effect on the state of the road 

infrastructure and its maintenance operations. On the one hand, road building itself has been a 

factor increasing the erosion risk, in particular in places where there has been unmanaged road 

construction activities with other boosting factors of erosion. Roads are likely to cause 

increased rates of erosion because, in addition to removing vegetation that covers the ground 

from heavy rains, they can significantly change drainage patterns of water. The high amount 

and intensity of precipitation and the texture of the soil cause soil erosion on many roads in 

the highlands and, moreover, the steep gradients increase soil erosion risk on the slopes where 

roads run. Erosion risk is increased by the degradation and the loss of vegetation adjacent to 

roads. The exiguous vegetation cover is dominant especially in certain dry lowland regions of 

Mwatate and Msau where gully erosion is prevalent. In addition, many hillside areas of the 

Taita Hills - where winding roads run on the slopes - suffer from soil erosion. 

 

On the other hand, soil erosion affects the road infrastructure and its maintenance operations 

as well. The existence of the soil erosion problem decreases the condition of road network by 

damaging roads, making roads poorly passable both by motorised and non-motorised means 

of transport and even preventing completely mobility and access of the local people to 

markets and basic services, especially during the rainy seasons. Hence, soil erosion increases 

the need for long-lasting road infrastructure and continuous, effective maintenance operations. 

The soil erosion and its effects need to be taken into deep consideration during the road 

construction and the maintenance operations. In addition to the road maintenance operations 

themselves, proper and adequate culverts and drainage are needed to take care of drainage 

patterns of the rainwater so that the flow of water is not hindered and funnelled straight onto 

the road surface but rather into the ditches from where it is funnelled further into the 

surroundings of a road. This will protect and extend the life cycle of roads and reduce the 

need for road maintenance operations themselves since there is less water on a road area 

damaging the structure of a road. In addition, the risk of soil erosion and its effect on access 
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and mobility can be reduced by upgrading a road to a tarmac surface, gravelling or paving the 

way so that the soft laterite soil is better bounded to hold the agent of water for erosion. 

Moreover, the environment surrounding the roads has to be taken into consideration to 

prevent soil erosion risk on those sites. This has been executed on the slopes of the Taita Hills 

traditionally by terraced fields and vegetation and lately, by road gabions (embankments) 

which are constructed from stones that are set under a metal net are used to prevent the gully 

erosion on the roads (Figure 19). The more intensive land use of the present-day Taita Hills 

with the loss of vegetation cover is increasing the erosion risk in the region. 

 

 

Figure 19. A road embankment (Keskinen 2005). 
 

In addition, other routine and periodic maintenance operations such as spot patching and spot 

improvement of paved surfaces, other improvements of carriageways, concrete bridge 

construction, roadside clearance, shoulder rebuilding and road furniture maintenance activities 

are essential to maintain and improve the quality of the road infrastructure in the Taita Hills. 

3.2.3 DEVELOPMENT OF THE ROAD INFRASTRUCTURE 

In recent years, there have been several major road construction and maintenance projects 

developing the state of the road infrastructure in the Taita Hills. In particular, recent activities 

have been focused on the maintenance of the classified road network as shown in Figure 20. 

Earth roads have been upgraded to gravel roads and earth and gravel roads to tarmac roads as 
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well. The section of the Mombasa-Nairobi international trunk road passing the east side Taita 

Hills region is in good condition with a fairly new tarmac surface, and the road is generally 

suitable for heavy freight traffic of lorries and trucks. On the other hand, further in the 

direction of Mombasa the road was of extremely bad quality in 2005 and under 

comprehensive rehabilitation so that these sections were barely passable with rugged, broken 

off surfaces of coarse gravel, and there was heavy congestion of both passenger and freight 

traffic. The international trunk road section from Voi to Mwatate was of moderate condition 

in 2004 and a year later, the road had been improved with spot patching activities. The 

following gravelled road section from Mwatate to Taveta was in bad condition and in need of 

re-gravelling, considering the large amount of freight traffic along the road of large potholes 

and rough, worn-out surface causing vibration of vehicles. The third paved road of the region, 

leading from Mwatate to Wundanyi was in good condition of proper tarmac so that the district 

headquarters, Wundanyi, is well connected with the lowlands regions and the principal market 

town Voi. However, patching of the potholes on the tarmac is needed on some sections of the 

road. Better connections are also required from Wundanyi to the north side regions of the 

Taita Hills. 
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Figure 20. Development of the classified road network in Taita Taveta District 2001 – 2008 
(Taita Taveta District Development Plan 2002-2008… s.a.: 76). 
 

The most obvious road infrastructure developments during the study period were focused on 

the two secondary roads in the south side of the Taita Hills, the one leading from the junction 

of the Voi-Mwatate road to Msau and further all the way to Wundanyi, and the one from Bura 

to Mgange Nyika. The first one was improved during 2004, first from the direction of Voi to 

Msau and thereafter from Msau up to Wundanyi so that although the hillside section was 

hardly passable during the intense rains in January 2004, it was in good condition a year later. 

The road maintenance activities along this road were noticed to be very comprehensive with 
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such improvement as road embankments and drainages. The other important road from Bura 

to Mgange Nyika was under maintenance at the beginning of 2005, and the road was partly in 

good condition. 

 

On the other hand, many roads of the classified road network are still in poor condition and in 

need of urgent and regular maintenance operations to improve the state of the road 

infrastructure and road transport in the Taita Hills region. The secondary road from Wundanyi 

to Werugha and up to Mwanda is in moderate condition: some sections are of good quality 

but respectively, in places the road is in poor condition with deep ruts that make the road 

hardly passable on the deepest sections, especially during rains. Other classified roads are as 

well of poor quality particularly in rain seasons when intense rains make many of these earth 

roads very slippery, muddy and loose, occasionally impassable by any motor vehicles. In 

addition, unclassified roads are in need of maintenance since they are usually the most 

important connections of the local people in their daily lives.  

3.2.4 DIMENSIONS AND MEANS OF THE ROAD TRANSPORT 

In general, the use of roads, the quantities and the means of road transport vary substantially 

according to different classes of roads.  Consequently, the whole meaning of road transport 

can be considered with functional classification of roads, in which a road class is used to 

specify the standard of service and the principal function of a road in relation to other 

elements of road infrastructure. The road transport in the Taita Hills has four different 

dimensions that are all relevant to influence the development of the region. Most of the roads 

are unclassified, rural roads that have the greatest meaning to serve local people and local 

transport connections. Several primary and secondary roads are important as well to enable 

regional transport connections within the Taita Hills and the Taita Taveta District and to 

neighbouring regions. Respectively, the national and international dimensions of road 

transport are achieved by few international trunk roads which are essential transport links to 

other regions and neighbouring countries, big cities, and to the coast which is linked to the 

other world with large-scale sea transport connections from the Mombasa harbour. 

 

The road transport in the Taita Hills vary from pedestrians, cycling, carts and other non-

motorised means to motorised transport: motor vehicles including mopeds, cars, pickups, 

lorries, trucks, and matatus handling a great part of the public transport in the region. 

Motorised road transport of local people by cars is exiguous since only few local people can 

afford to have a private car. On the contrary, freight transport by lorries and trucks is 
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significant, and public passenger transport mainly by matatus is common as well. The public 

service facilities of the district consist of 40 buses, 50 matatus, 10 pickups and 20 taxis (Taita 

Taveta District Development Plan 2002-2008… s.a: 11). Generally speaking, non-motorised 

means of road transport are still the most important mode in terms of the mobility of the local 

people. 

3.2.5 IMPORTANCE OF THE FUNCTIONAL ROAD TRANSPORT 

Inaccessible roads, poorly maintained roads, inadequate roads and corruption in contract 

tendering are the main problems of road infrastructure in Taita Taveta District (Taita Taveta 

District PRSP… 2001: 28). The poor state of the road network is a major obstacle to 

agriculture and development of the region (Vogt & Wiesenhuetter 2000: 56). In (Taita Taveta 

District Development Plan 2002-2008… s.a.) the emphasis of road infrastructure development 

is on improvement on existing roads in order to upgrade them to all-weather roads so that they 

are better accessible to local farmers. Earth roads need to be improved to gravel standard and 

roads in steep sections will require concrete slabs so that they are passable throughout the year 

(Taita Taveta District Development Plan 1994-1996… s.a.: 67). In particular, the roads of 

rough terrain in the hills need to be maintained regularly to guarantee the access along these 

important local routes. It will facilitate cheaper, more efficient marketing of agricultural 

produce and enable the provision of other essential services to the rural population of the 

Taita Hills (Dijkstra & Magori 1994: 14). 

 

The proper road infrastructure and consequently functional road transport have also had a 

great influence on the economic and social development of the Taita Hills - at local, regional, 

national and international scales. The extensive network of rural roads plays the most 

important role in daily living of the local population. Local markets are important to rural 

households that get their major sources of income in horticultural production (Dijkstra & 

Magori 1994). Farmers need good roads to access local market centres, agricultural inputs and 

basic services such as health care and education, either by motorised vehicles or by non-

motorised means of road transport. Personal travel generally predominates on rural roads of 

the developing countries, and transport of goods is less (Irandu 1996). When rural roads are of 

good quality, less time is needed for collecting firewood and carrying drinking water and 

hence, more time can be used for other daily activities such as education and agriculture. In 

addition, development of rural roads can generate employment by increasing labour activities 

for women, not only in agricultural sector but also outside their farms, such as small-scale 

industries and other ways of earning extra income (Irandu 1996).  
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On the other hand, certain regions in the Taita Hills are occasionally poorly accessible or even 

isolated due to the bad road infrastructure. In particular, narrow earth roads passing steep 

sections on the slopes get in substantially worse condition during the rainy season. Therefore, 

it is essential to have an extensive network of roads, tracks and paths of good quality to serve 

better the need of local people in the Taita Hills. 

 

At the regional and national scale, functional transport of the Taita Hills is an important factor 

in reducing regional isolation throughout the coast province by providing a more efficient 

connection to the inland of Kenya. Indeed, the strategic location of the Taita Hills and the 

major transport routes in the neighbourhood of this distinct fertile highland area have had a 

great influence on the development on the region. The Taita Hills is a unique region with its 

favourable conditions for agriculture and with its abundant resources to serve regional 

markets and business activities. The Nairobi-Mombasa highway and the Voi-Mwatate-Taveta 

trunk road constitute major routes for road transport from and to Taita Hills. The highway 

traversing through the district has opened markets for regional trade of agricultural products 

to the major urban centres of Voi and Nairobi and, above all, to Mombasa where there exists a 

high demand of urban consumers and a massive tourism industry (Dijkstra & Magori 1994: 

78-89; Krhoda 1998: 37-38). Moreover, the highway has enabled the delivery of goods from 

the Mombasa seaport to the Taita Hills and further to the inland. In addition, good 

connections to Wundanyi are essential since it is the headquarters of the district and the 

principal market centre of the highlands with its basic services for local people.  

 

The Taita Hills region also benefits from its beautiful scenery and the biodiversity of the 

nature, that create possibilities for a tourism industry of various activities and at different 

scales. The functional road infrastructure is a crucial prerequisite for all tourism services to 

connect tourist attractions and other places of interest to accommodation and travelling 

services. Tsavo East and Tsavo West national parks as well as LUMO Wildlife Sanctuary are 

the most important tourist attractions on the surrounding plains of the Taita Hills. The 

potential of the Taita Hills highlands should be noticed by placing more emphasis on the 

improvement of the road infrastructure connecting the lowland and the highland regions such 

as the road from Maktau to Mwanda. In addition, the Taita Hills have potential for small-scale 

ecotourism (Himberg 2006) that can be promoted with the development the rural roads 

leading to small villages, tourist attractions and the most remotest parts of the region.  
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As described, a few main roads of the south side of the Taita Hills have already been 

improved with comprehensive maintenance operations to better connect different parts of the 

Taita Hills region. However, connections to the north side of Taita Hills (e.g to Kisushe) and 

rural roads within the highland areas are still inadequate and occasionally of poor quality too. 

Moreover, there are secondary roads such as the one from Wundanyi to Werugha and 

Mwanda, and the one from Msau to the direction of Mbololo forest, that are in need of 

maintenance operations, not only to facilitate tourism but also for the daily life of the local 

people as well. Himberg (2006) states that proper roads at the entrance points in the west and 

north-west side of the Taita Hills, and in Chawia and in Mbololo destinations are essential to 

improve the potential of ecotourism in the Taita Hills region. 

 

The Nairobi-Mombasa highway and the Voi-Mwatate-Taveta road have been of great 

international stature, to boost the trade with other countries of East Africa. The manufacturing 

sector of Kenya has benefited from increased trade with Tanzania, Uganda and the COMESA 

region, particularly in agro-industrial products, plastics and engineering goods (OECD 2006). 

The Mombasa-Nairobi highway is one of the main transit corridors of the COMESA network 

operating as an essential link between the ports and hinterlands. Likewise, the road from Voi 

to Taveta is an essential link to connect Taveta market place with the Taita Hills region and 

Voi trade centre. Regional and international passenger traffic of labour and tourists has been 

enabled by these two international trunk road connections. There are several sisal plantations 

along these major routes of which Teita Estate is the largest one in the world. These estates 

employ hundreds of people and produce a huge amount of raw material for sisal products that 

are transported all over the world. However, the rich horticultural production area of Taveta 

sub-district is occasionally cut-off due to the deteriorated Mwatate-Taveta road section, which 

also impedes the international transport connections between the district and Tanzania (Vogt 

& Wiesenhuetter 2000: 56). 
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4. THEORETICAL FRAMEWORK  

In this chapter, the theoretical framework of the thesis is introduced. The theoretical 

framework is formed around the combination of a remote sensing and GIS methodology that 

is applied to the field of road transport, in particular road infrastructure mapping. The concept 

of road transport is generally reviewed in Chapter 1 and at the Kenyan and Taita Hills scales 

in Chapter 3. At first, the main principles of remote sensing (RS) in road studies are 

considered and thereafter, background of the selected methodology is presented. 

4.1 REMOTE SENSING – BASIC PRINCIPLES 

Remote sensing is defined as the science of acquisition, recording and analysis of information 

about an object area or phenomenon from a distance without being in direct physical contact 

with the object of interest (Lillesand & Kiefer 2000: 1). RS is based on the propagation of 

electromagnetic radiation and its interactions with atmosphere and earth surface features. The 

reflected or emitted radiation is recorded by RS devices, which are generally divided into 

passive and active systems depending on their mode to collect data. While passive systems 

(e.g. cameras and multispectral scanners)  measure naturally available sunlight energy 

reflected or emitted from terrain, active systems (e.g. radar and microwave sensors) use their 

own source of energy to record objects of interest. Terrain features have varying reflectance 

characteristics at different wavelength regions and with each other, and consequently, RS 

devices have varying abilities to measure different features and portions of the 

electromagnetic spectrum. 

 

Currently, there is a wide variety of RS systems that acquire data at different resolutions from 

low to very high spatial resolution and from multispectral to hyperspectral, and at varying 

repetitive temporal cycles. Choosing an appropriate data depends on phenomenon itself and 

the resources available for that particular application. Generally speaking, with RS devices the 

cost-effective and up-to-date data may be obtained systematically, regularly over very large 

geographic areas rather than just single point observations and for a wide number of 

applications. The integration with GIS improves the management and use of data, extending 

the range of applications which the information can be used for. An example of applying RS 

and GIS methodology to various purposes in the developing world is introduced by Pellikka 

(et al. 2004). 
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4.2 SCALE AND RESOLUTIONS 

Remote sensing systems collect data either in analog or digital form, and they have different 

resolution properties to detect signals. The resolution characteristics of a RS sensor describe 

its ability to distinguish between signals that are spectrally similar or spatially near (Jensen 

1996: 3). In general, spatial, spectral, temporal and radiometric resolutions are used to define 

the accuracy of a RS system and the scale at which a phenomenon can be described (Hay & 

Marceau 2004). Spatial resolution is often used to represent the scale of measurement when 

RS data are processed in a digital format (Atkinson 2004). While spatial resolution expresses 

the accuracy of a sensor to record spatial detail of an image observation on the imagery in 

form of arbitrary pixel units, scale describes the magnitude or the level of aggregation on 

which a certain phenomenon can be described (Definiens 2004). Each scale reveals 

information specific to its level of observation (Marceau 1999) and therefore, it is 

advantageous to have a multi-scale approach to study different levels of information. 

 

The use of spatial resolution as a representation of scale is problematic in a remote sensing 

context. In particular, many urban areas have a complex nature and discreet patterns which 

brings along the mixed pixel problem, a case when a pixel is composed of several pure 

components and the resulting pixel information is a combination of the spectral responses of 

these individual pure materials (Ben-Dor 2001: 244). The coarser the spatial resolution and 

the more increased fragmentation of the landscape, the more complex is the problem of mixed 

pixels and less objects are to be detected clearly (Foody 2004). 

 

On the other hand, it is not always appropriate to use data at the highest spatial resolution to 

avoid the mixed pixel problem. Unnecessary details of remote sensing imagery may become 

apparent if data at very high spatial resolution are utilised for the purposes of general analysis 

(e.g. land use studies). In some cases, data at very high spatial resolution are needed to reach 

the very accurate results of an analysis, whereas low or medium resolution data are adequate 

to the purposes of many applications. Furthermore, a fully pixel-based method is not always 

the best solution for effective analysis and thus other techniques, not only those based on the 

pixels and the spatial resolution of data, need developing. 

4.3 REMOTE SENSING OF ROADS 

Roads constitute an essential geospatial layer in many applications, and roads are one of the 

most important classes of topographic objects. It is therefore of fundamental importance to 
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develop effective methods to obtain accurate, up-to-date data of road infrastructure. However, 

it requires that certain basic principles of roads in a remote sensing context are followed. 

4.3.1 URBAN CHARACTERISTICS 

Roads are man-made, built objects usually associated with urban surfaces of infrastructural 

features and artificial, urban materials. The terms “man-made” and “artificial” refer to objects 

artificially created using synthetic or natural materials. Man-made objects are usually 

composed of distinct points, lines and regions related to each others and forming the 

ensembles of structures (Trinder & Wang 1998). In terms of their existence, however, roads 

are not only urban objects, but they are placed nearly in all kind of environments: urban, 

suburban, rural, natural surroundings etc. 

 

There are several essential criteria concerning remote sensing of urban environment and urban 

objects. In an urban environment two major aspects can be remotely sensed: natural targets 

and man-made targets (Ben-Dor 2001). Environmental aspects in urban areas can be grouped 

into two categories: short-term and long-term aspects (ibid.: 245). Short-term aspects are 

defined as an environmental change that occur within days (e.g. air pollution and traffic load), 

whereas long-term aspects refers to spatial change which take place over months or years, 

such as built-up area or road changes.  

 

Jensen & Cowen (1999) state that, besides having a sufficient spectral contrast between the 

object of interest and the background, it is more important to have high spatial resolution 

rather than high spectral resolution when extracting urban or suburban information from 

remote sensing data. Furthermore, the authors propose a spatial resolution standard of less 

than 5 meters for detailed urban area mapping. On the other hand, in many applications the 

spectral resolution of existing multispectral remote sensing sensors is still inadequate, and this 

is a great limitation on the effective RS of diverse urban environment and urban objects. 

4.3.2 PHYSICAL CHARACTERISTICS 

Roads are geometric, linear features which appear in varying ways on remotely sensed 

images, depending on sensor sensitivity and resolutions, scale and surrounding as well as the 

characteristics of roads themselves. Roads are mainly found as “twisting” structures forming 

solid networks between the nodes and routes between junctions. Linear features are very 

complex in a remote sensing context as their spectral and spatial characteristics generally vary 

along their extent (Wang et al. 1992). For example, the contrast along one linear feature 

against its background may vary from one location to another. 
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Spectral reflectance curves of urban surfaces differ substantially from each other, as shown in 

Figure 21. These general urban spectral reflectance characteristics are valid for the road 

surfaces too. Hence, roads have high within-class variability of spectral characteristics since 

they are constructed from different materials which produce a broad range of spectral 

signatures. Roads have spectral properties similar to other urban features, partly due to the 

fact that they are composed of similar materials. Consequently, it may result in spectral 

confusion between roads (e.g. asphalt-paved road) and specific roofing materials (Noronha et 

al. 2002). Asphalt roads also appear to have similar spectral trend to urban features such as 

paved parking lots, runways or sideways (Herold et al. 2004). Furthermore, gravel or concrete 

roads may be indistinguishable from bright targets of bare soil surfaces.  

 

 

Figure 21. Typical spectral reflectance curves for selected urban-suburban phenomena (Jensen 
1989, cit. Jensen 2000: 47). 
 

In the developing countries, the problem of spectral similarity between roads and other land 

cover may be even more problematic than in the developed countries where concrete and 

asphalt surfaces are more prevalent. Natural building materials (e.g. clay, mud bricks and 

thatch) are often used in the construction of buildings in urban areas (Hurskainen 2005: 16). 

Likewise, especially rural roads in the developing world are more often constructed from 

materials found locally in the nature than using concrete or asphalt surfaces. The use of soil 

components (e.g. gravel or coarse sand) for road construction and the coexistence of dry, bare 

soil surfaces may increase the spectral confusion of roads and other land cover. 

 

The existing methods in the remote sensing of roads are usually based on road models where 

roads are assumed to follow a number of generalities and where roads are described in terms 

of geometry, spectral characteristics, topology and context. However, there is a wide variety 
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of roads of diverse properties due to their different functions and construction materials, and 

environments where they exist. Furthermore, the characteristics of roads vary at different 

resolution levels (Mayer & Steger 1998). Road models are described in several papers (e.g. 

Bajcsy & Tavakoli 1976, cit. Auclair Fortier et al. 1999; Barzohar & Cooper 1996; Gruen & 

Li 1997), in which, roads are usually defined with the following assumptions and generalities 

about their physical characteristics in remote sensed imagery: 

 

• Roads are represented by continuous, narrow lines / regions of higher brightness 

values than their neighbour pixels on both road-sides. The brightness values of 

road pixels stay rather constant within a short distance and within the certain 

pavement material while the variation between road and background pixels, 

different road surface materials and over long distances is likely to be larger. 

• Road are linear features composed of long, continuous, horizontal segments with 

smooth curves and straight lines. Neighbouring road segments are topologically 

linked to each other to form routes between nodes; a road network. 

• In general, roads are straight locally but not globally. Roads are smooth in terms of 

their local curvature, and roads do not have small local wiggles. The local change 

of direction is limited and is likely to be gradual, although the upper limit is highly 

dependent on the classification of a road and the physical geography of a region 

where the road runs.  

• Road width change is likely to be gradual. The width of a road has an upper 

bound, which likewise depends on the classification of a road. 

• The steepness of roads has an upper bound, and that is why in mountainous or 

hilly terrain regions roads are likely to be winding and serpentine. 

 

The physical characteristics influence on the visual characteristics of roads which define the 

appearance of roads in remote sensing imagery. Vosselman (1996) and Gerke (et al. 2003) 

criticise that roads are often described only by their geometrical and spectral properties which 

may confuse them with other linear objects (e.g. rivers or railways). Hence, context and 

topology should also be taken into consideration with other physical properties in the analysis. 

Besides, it is essential to pay attention to other factors affecting the appearance of roads in 

remote sensing imagery: sensor sensitivity and resolutions, scale, background, etc. 
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4.3.3 INFLUENCE OF SCALE 

The appearance of roads depends substantially on the image scale represented by spatial 

resolution of the digital imagery. In low resolution imagery, roads are smooth objects 

modelled as lines of one-to-two pixels in width. Roads usually have higher intensity than their 

background (Trinder & Wang 1998), but however, brightness values of different construction 

materials can vary greatly. In medium resolution images, roads appear as homogenous areas 

bounded by two parallel boundaries within which the properties of the surface are measurable 

and lane lines may be visible. In high resolution images, roads are long, “rectangular-like” 

objects which cover narrow areas represented by several adjacent pixels. Roads are defined as 

elongated areas bounded by two parallel edges. The edges between road and neighbouring 

pixels are fairly sharp, and it is usually relatively easy to locate and assign a specific road 

class pixel.  

 

A multi-resolution approach for road extraction is more successful than a single resolution 

one (Heipke et al. 1995). In general, digital camera data or other high spatial resolution 

imagery can be used to study the current status and change of road networks at a large scale, 

while satellite imagery of low or medium spatial resolution are principally applied to detect 

general features of road networks, direction of expansion and changes at small scale. The 1-30 

m spatial resolution data is suited for general road centreline extraction while 0.25 m – 0.5 m 

data makes possible precise road width examination (Jensen 2000: 410). Each scale has its 

advantages, which often correspond to the drawbacks of the other (Heipke et al. 1995; 

Auclair-Fortier et al. 1999). In low-resolution images, small disturbances such as shadows by 

adjacent buildings or cars on a road are not so prominent or may even not be visible at all due 

to the averaging of the grey-scale values. Moreover, general road network structure can be 

seen clearly. In high resolution images, the geometric accuracy is much better, which usually 

makes possible a more accurate detection of roads. There are generally different algorithms 

for road detection at each resolution level due to the different appearance of roads in different 

scales. 

4.3.4 INFLUENCE OF BACKGROUND 

Roads appear differently on remote sensing images depending on the background where they 

exist. The most important condition for an acceptable result in the road detection process is a 

good contrast between roads and their background (Baumgartner et al. 1999). However, roads 

may have reflectance values similar with their background as already described above. 

Difficulties may arise when a road passes through or close to an area of bare ground, a 
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settlement or a construction site. In addition, background may have a strong, disturbing 

influence on the appearance of roads due to the elongated characteristics of roads. Roads are 

usually represented by narrow lines or regions of not more than few pixels and thus, road 

pixels may get erroneous value from their neighbours instead of getting the proper values. 

 

As a “bottom layer” of three-dimensional land surface structure, roads are often covered or 

shadowed by surrounding surfaces such as tree canopies, other vegetation, buildings or cars 

(Herold et al. 2003b). Other objects can fully or partially cover a road segment which results 

in a spectrally indistinct response with a high amount of spatial variability.  

 

This brings along the mixed pixel problem (Campbell 2002: 277), in this case a value of a 

road pixel is inaccurately represented and mixed with the surrounding land cover or land use. 

The spectral continuity of the road is then interrupted and the contrast eliminated between 

road and its surroundings. 

 

The extent of interruption by background depends on the surrounding land cover or land use 

itself. Usually, in rural areas there are only few disturbing background objects, e.g. single 

buildings or trees that influence the appearance of roads in the imagery (Baumgartner et al. 

1999). On the contrary, in urban environment the level of disturbance becomes more complex 

(Hinz et al. 2001). Other urban objects may be spectrally similar due to similar material 

composition (e.g. roads and roofs) or spectral confusion between specific urban materials and 

bare soil surfaces (Herold et al 2004). In addition, shadows by high buildings and cars may 

disturb the appearance of roads. Furthermore, in forest areas roads are often not visible due to 

tree canopy as a “top layer” of land cover. Thus, only fragments of the road network may be 

detected.  

4.3.5 REMOTE SENSING IN ROAD STUDIES 

Since there is a wide range of roads of diverse characteristics and they exist in nearly all type 

of environments, road detection is a very challenging operation. Roads have been of great 

interest in the last few decades, and there has been much intensive research to automate the 

process by applying different automatic or semiautomatic techniques for road extraction. The 

existing techniques are often inadequate, complicated or time-consuming to implement, or 

suitable only for certain environments, road types or resolutions. These methods are often 

based on relatively simplistic road models, and most of them make only insufficient use of 

prior information, such as data from maps and GIS (Zhang 2001). The diversity of road 
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extraction strategies is probably due to the fact that none of them are reliable in all 

circumstances (Auclair-Fortier et al. 1999) 

 

Road extraction approaches can be classified in several ways (Mena 2003). Firstly, road 

extraction tasks are generally categorised according to the degree of automation (Zhang 

2004). A traditional way for road detection is manual interpretation, which may still be the 

most functional and reliable way to extract road information in many applications. Semi-

automatic methods can also be viewed as knowledge-based methods, in which the existing 

knowledge can be used to ease and speed-up object extraction (Baltsavias 2004). Fully 

automatic methods attempt to achieve true operational autonomy (Agouris et al. 2001). While 

methods fail to provide good quality results and are very slow, semiautomatic methods are 

often more successfully applied to various purposes (Eidenbenz et al. 2000). 

 

Secondly, road extraction approaches are classified according to their technical aspects: the 

basic principle and functionality of a road extraction algorithm (Auclair-Fortier et al. 1999; 

Mena 2003). Among others, segmentation is one type of method discussed in the latter paper. 

The segmentation technique is essential in the context of this study (see Chapter 4.7). 

 

Thirdly, road extraction approaches are classified based on the functionality; the context 

where they operate successfully. As roads exists in nearly all kind of environments and as 

background has a great meaning in road detection processes, road algorithms have been 

designed with a high level of details for that environment from which they are supposed to be 

extracted. Several papers (Hinz & Baumgartner 2000; Hinz et al. 2001; Butenuth et al. 2003) 

note that most of the approaches are focussed on the extraction of roads in a limited 

environment, usually in rural areas. Thus, road extraction mainly relies on road models that 

describe the appearance of roads in an open, relatively undisturbed environment, where roads 

are not obscured by buildings or trees and are relatively easy to detect. Meanwhile, the more 

complex urban environment has often been neglected, although there have been a number of 

efforts in recent years towards the more comprehensive extraction of roads in urban 

environments. Therefore, certain techniques are needed for the effective extraction of urban 

objects and roads in an urban environment and in other areas of heterogeneous land cover and 

land use. 
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4.4 SELECTED METHODOLOGY 

The initial selection of the remote sensing (RS) and GIS methodology for this thesis is guided 

by the principles introduced above. In addition, the following issues are considered when 

choosing the methods suitable for this context: 

 

• Methodology is suited for the diverse road infrastructure of the heterogeneous land use 

of the Taita Hills. The methods, however, are developed with a view to apply them 

generally to road mapping in the developing world. 

• Methods are practical, straightforward and cost-effective, so that they could be 

appropriate, feasible and effectively utilised in the developing countries. 

• There are data at different scales and resolutions available for this study. Thus, the 

methodology on trial is developed from the viewpoint of selecting best options for 

each “level” of examination, then discussing generally different approaches in the road 

mapping, and comparing their pros and cons. The emphasis is placed on the 

multispectral remote sensing approaches due to the multispectral nature of the RS data 

available. 

• The focus is on the general road mapping applying a certain level of automation and 

novel techniques in the procedure. Above all, object-oriented approaches of 

eCognition software are considered, since segmentation-based classification along 

with automatic vectorisation could have potential for efficient, automated road 

extraction to substitute manual interpretation of roads and to generate practical vector 

format output. The data could be then completed by manual editing and used for 

updating the existing road data layer of the Taita Hills geodatabase 

• Despite the emphasis on the digital analysis techniques, visual interpretation is 

implemented as well, since it is still assumed to be the most reliable method for 

accurate road detection and delineation.  

• Pixel-based approach is also taken into consideration, since it is commonly used and 

relatively easily applied to the RS context. 

• Field spectrometry is applied to analyse the spectral characteristics of the different 

road surfaces with the existing spectral libraries, and to discuss the potential of these 

approaches for detailed road mapping purposes.  

4.5 VISUAL INTERPRETATION 

Image interpretation is defined as the examination of images to identify objects and to assess 

their significance (Philipson 1997). The image interpretation tasks are classification, 
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enumeration, measurement and delineation (Campbell 2002: 124-125), and the image 

interpretation may be either visual or digital. In the last few decades, there has been much 

effort to automate the process of image interpretation. However, visual or manual 

interpretation has still kept its significance in many remote sensing applications, and this 

traditional, qualitative way of image interpretation is often applied at least to evaluate and 

visually check the results of more automatic, sophisticated methods. In many cases, the visual 

analysis is still the most successful method to obtain reliable and accurate information from 

remote sensing imagery. 

 

Visual interpretation is a very user-dependent process, which is carried out based on the skills 

and experience of interpreter to detect, identify, describe and assess object information. The 

analysis is based on the elements of visual interpretation which include location, size, shape, 

shadow, tone and colour, texture, pattern, height and depth, and site, situation, and association 

(Jensen 2000: 119-136). The benefits of the visual interpretation are that it is a simple, 

concrete method and it needs inexpensive equipment while automatic interpretation usually 

requires high-priced tools and expertise of staff to perform the process. Instead of using 

automatic methods, it is often possible to obtain reliable results more rapidly performing 

visual interpretation. The chances of misinterpretation of objects are very less due to the 

expertise, experience and local knowledge of the field. On the other hand, visual 

interpretation is a very subjective method and highly depends on the interpreter, in terms of 

the success or failure. It may also be time-consuming for less experienced interpreters, 

whereas digital methods may be more cost-effective for large areas and for repetitive studies 

and they may also result in more consistent results. 

 

Visual appearance of roads in digital images may be improved performing image 

enhancement techniques to data (Jensen 1996: 139-195; Mather 2001: 97-111). Image 

enhancement techniques are designed to modify the appearance of an image in such a way 

that the information is more readily interpreted visually in terms of a particular need. Image 

enhancement is an arbitrary way to modify the content of an image and thus, enhanced images 

should not be used as an input for automated techniques of image interpretation. On the 

contrary, image enhancement techniques are often applied in context of visual interpretation. 

These techniques alter the original pixel brightness values of the digital image data and may 

emphasise the visibility of roads from their background. 
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Image enhancement techniques can be classified as either point or local operations (Jensen 

1996:139-195). Point operations modify the brightness value of each pixel in the image data 

set independently while local operations change the value of each pixel based on 

neighbouring brightness values (ibid.) Image enhancement approaches can be categorised as 

contrast manipulation, spatial feature manipulation and multi-image manipulation (Lillesand 

& Kiefer 2000: 488-532). The selection of the proper methods and the choice of the right 

parameters depend on the quality of the original image data and on the application itself. 

 

Contrast enhancement, also referred to as histogram stretching, modifies the original input 

brightness value range of the image. A new histogram will then have the same number of the 

brightness values available as the old one but they will simply be situated at different 

locations (Richards & Jia 1999: 92-93). Contrast enhancements can be considered as linear 

and non-linear stretch techniques (Jensen 1996: 145-152; Gibson & Power 2000: 35-40). 

While linear stretch expands equal digital number (DN) ranges by equal amounts, non-linear 

enhancement gradually stretches DN ranges by different amounts. 

 

Spatial filtering is a local operation in which pixel brightness value is modified on the basis of 

the brightness values of neighbouring pixels (Lillesand & Kiefer 2000: 499). This approach 

makes possible to extract, reduce or amplify specific frequency components of a digital 

image. Spatial frequency enhancing can be performed either using spatial convolution 

filtering or Fourier analysis (Jensen 1996: 153-171). Convolution filtering is accomplished 

using a particular convolution kernel, a matrix of weighting factors which average the value 

of each pixel with the values of surrounding pixels (Erdas 2003: 158). High-pass filters 

emphasise the detailed high frequency components of an image called "image sharpening” 

and de-emphasise the more general, slowly varying low frequency information. Low-pass 

filters operate just the reverse way, thus “blurring” the image.  

 

High-pass filters serve as edge enhancers, since they emphasise the edges within an image. 

An edge is a discontinuity or an abrupt, sharp, change in brightness value between two 

adjacent pixels of an image. Edges are generally formed by long linear features such as 

geological structures or rivers but however, urban landscapes also contain edges formed by 

cultural features such as roads, railways and the outlines of buildings (Gibson & Power 2000: 

50). Edge enhancement delineates these edges and makes the shapes and details comprising 

the image more evident and easier to interpret (Jensen 1996: 158). 
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Roads – as well as coastlines, river systems and other linear structures - are usually identified 

relatively easily from remotely sensed data by their spatial character and then delineated 

through digitising. Roads are either delineated as lines or polygons that depend on the spatial 

resolution of remote sensing data and the purpose of the actual visual interpretation task. 

Digitising of roads along their centre lines is applied when using data of low resolution and/or 

if there is a need for a relatively rapid delineation process. Respectively, roads described by 

polygons are a more realistic and accurate representation when using high resolution data but, 

however, are a more time-consuming operation to carry out and not necessarily the most 

practical output either. Classification and other additional tasks such as building topology of a 

road network are carried out in the context of the digitising process. 

4.6 PIXEL-BASED APPROACH 

Pixel-based techniques are a quantitative approach to digital image analysis (Richards & Jia 

1999: 75-88). So far, supervised and unsupervised classification methods have been the most 

common types of automatic image interpretation they offer a valid method for automatic 

classification purposes. The pixel-based methods have routinely been applied to remote 

sensing data since the first spectral classifiers developed in the 1970s. However, these purely 

spectral-based approaches have their limitations (Blaschke & Strobl 2001). In the pixel-based 

approaches, pixels are assigned to spectral classes according to their brightness values, and 

informational objects classes are then derived from the spectral classes and their subclasses 

(Campbell 2002: 321-323). Pixels having similar spectral characteristics are consequently 

assumed to belong to the same class. The classification process is carried out without any 

further information, such as spatial context or texture. Therefore, in many ways this type of 

classification is very inadequate and the obtained results may be rather inaccurate. In 

particular, the problem may be outstanding in cases of a coarse spatial resolution and 

spectrally complex urban environment, resulting in the mixed pixel problem. Townshend et 

al. (2000) point out that in the pixel-based characterisation of land cover a substantial 

proportion of the signal apparently coming from the land area represented by a pixel comes 

from the surrounding pixels. Consequently, spectral response of individual pixels is often 

inadequate to guarantee the success of a classification process.  

 

Pixel-based classification techniques are often rather limited methods for the road extraction 

of different road types in diverse, urban environments. The characteristics of roads make the 

concept of road extraction a challenge, because roads are very diverse both spatially and 

spectrally.  The methodology based on the pixel-based classification and one spatial scale 
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does not make sufficient use of spatial concepts of neighbourhood, proximity or homogeneity 

(Burnett & Blaschke 2003). Therefore, new classification concepts are required which could 

be implemented more effectively in challenging remote sensing applications of road 

extraction. These concepts should pay more attention to additional information and scale 

issues, exploiting contextual information and road characteristics and not be limited to one-

scale, pixel-based examination. 

4.7 OBJECT-ORIENTED APPROACH 

Segmentation is an innovative object-oriented approach and it is a prerequisite for object-

based classification (Baatz & Schäpe 2000), which is a promising and superior approach to 

traditional pixel-based classification methods (Blaschke & Strobl 2001; Schiewe et al. 2001). 

The common image segmentation techniques were initially reviewed by Haralick & Shapiro 

(1985). Available image segmentation approaches are generally grouped into three categories: 

pixel-, edge- and region-based techniques (Blaschke et al. 2004). Image segmentation can be 

viewed as a clustering process in which the basic processing units are segments, clusters 

instead of single pixels. Segmentation is defined as the search and subdivision of 

neighbouring pixels of an image into separated, homogenous regions based on certain 

similarity criteria (Mather 2001; Definiens 2004) and the basic objective of the segmentation 

is to generate meaningful, homogenous objects for the following classification. In an urban 

environment sharp, discrete boundaries and a high-frequency change of different built objects 

with similar reflectance properties occur more often than in many natural environments 

(Blaschke & Strobl 2001).  

 

The segmentation-based classification procedure in eCognition software offers a sophisticated 

method that is implemented at a segment level with additional, contextual information. The 

key to eCognition’s region-based approach is that the internal heterogeneity of a segmentation 

parameter under consideration is lower than the heterogeneity compared with its neighbouring 

regions (Blaschke et al. 2004). In eCognition, the multi-scale segmentation procedure can be 

performed through the two reverse approaches: top-down and bottom-up methods 

segmentation techniques (Hofmann & Reinhardt 2000; Definiens 2004: 65-67). Hofmann 

(2001a) places the emphasis on the distinction between the two approaches and on the order 

of segmentation that affects the results of the segmentation. Hence, the approach should be 

determined by the main focus of the classification and by the image data features. 
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The region growing segmentation should be appropriate for linear object extraction since 

shape information can be included in the similarity criteria of region growing. As roads are 

typically elongated features, spatial characteristics are better suited to describe them than their 

spectral properties (Hofmann 2001b). On the other hand, in terms of their shape 

characteristics, roads appear similarly with other linear object (e.g. rivers and railways) and 

there is a chance for confusion between these linear elements.  

 

Object-oriented approach is expected to be suitable for the purposes of this study, in order to 

extract meaningful road object information from the remote sensing imagery. The multi-

resolution segmentation and supervised classification conducted by fuzzy logic with the 

following automatic vectorisation procedure offer potential methods for the mapping and 

updating of the road infrastructure. 

4.8 FIELD SPECTROMETRY AND HYPERSPECTRAL REMOTE SENSING 

The weak knowledge of urban spectral properties is one of the major disadvantages of remote 

sensing (RS) of urban environment and transport infrastructure. There is an inadequate 

understanding about the spectral nature of different road surface types and their characteristics 

at varying age and condition. The complex nature of urban environment exacerbates 

discriminations between different urban surfaces (e.g. roads, buildings and parking lots) and 

decreases the effectiveness of the multispectral sensors. The existing multispectral devices 

have significant spectral limitations in mapping urban environment and road surfaces due to 

the location of the spectral bands and the broadband character of these sensors (Herold et al. 

2003b). The spectral heterogeneity and the distinct spectral characteristics of urban materials 

and land cover types need to be taken into consideration in the discrimination and mapping of 

road surfaces. The spectral characteristics of urban features can be investigated with three 

different approaches: 1) applying in situ spectral measurements, 2) using existing spectral 

libraries of urban objects, or 3) acquiring and analysing hyperspectral RS data. The best 

results are achieved when data of these different approaches is analysed in the common 

context. 

 

Field spectrometry is the quantitative technique to measure spectral reflectance, irradiance, 

radiance or transmission of surface materials to determine their spectral response patterns. 

The ground-based measurements are applied to calibration of remotely sensed data, prediction 

of best conditions for observing and acquiring data, and modelling the reflection from 

different surface structures (Barrett & Curtis 1999: 125). In addition, field observations 



 

  60 

provide detailed information about the spectral characteristics of individual materials for more 

precise, sophisticated image analysis techniques. Field spectrometry offers a technique for 

direct material identification instead of sample collection for later laboratory analysis.  

 

Field spectrometry is usually conducted with spectroradiometer which is a hyper-spectral 

system with a very small spectral sampling interval (~1 nm), or with a radiometer that is 

typically a broad-band multispectral device with larger spectral sampling interval (~50 nm). 

The former allows collecting of continuous spectrum data with high spectral resolution and 

discrimination, whereas the latter has more limited capacity for spectral analysis. 

 

Among others, field spectrometry may be applied to measure the reflectance of road surfaces 

and to acquire detailed information about the varying spectral characteristics of different road 

construction materials. At present, there are a number of urban spectral libraries constructed 

from in situ spectrometry measurements (Ben-Dor 2001: 243-281; Herold et al. 2004). These 

libraries consist of the individual spectra of urban materials, including roads, classified to 

different categories according to their spectral characteristics. The information of the libraries 

may be applied in detailed road studies including both rural and urban environment schemes 

and different road types. Spectral libraries enable comprehensive road analysis because they 

are able to derive very accurate information about the spectral separability and the spectral 

signatures of urban materials (Herold et al. 2004). In addition to existing spectral libraries, 

field spectrometry data may be analysed with laboratory measurements or with hyperspectral 

remote sensing data. 

 

Hyperspectral remote sensing – also referred as imaging spectrometry - involves simultaneous 

acquisition of a large number contiguous spectral bands with hyperspectral sensors in order to 

make possible the construction of reflectance spectra at a pixel scale and the examination of 

these spectra with similar spectra measured either using field spectrometry or in a laboratory 

(Jensen 2000: 227; Van der Meer & Jong 2001). There are several reasons for applying 

hyperspectral imagery in various RS applications (Shippert 2004). Unlike common 

multispectral sensors, hyperspectral devices have the ability to image up to 224 bands and 

derive the complete reflectance spectrum of each picture element of an image (Jensen 2000: 

226-231). The much increased spectral dimensionality enables substantially more precise 

investigations and more accurate discriminations of data, extending the range of applications 

and defining new concepts and analytical techniques (Landgrebe 2000; Campbell 2002: 407-

417). Therefore, hyperspectral devices have great possibilities in urban applications and in RS 
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of man-made structures. On the other hand, the hyperspectral image analysis needs to be 

performed outstandingly carefully due to the increased volume of data and the novel 

approaches to be applied (Lillesand & Kiefer 2000: 592-597). 

 

On the other hand, Noronha (et al. 2002) argue that the discriminating ability of hyperspectral 

remote sensing is concentrated within a few wave bands. In addition, the classification 

accuracy can actually decrease if too many highly correlated spectral bands are applied so that 

the sensor derives “too much” spectral information (Landgrebe 2000). Furthermore, the 

current hyperspectral devices and techniques are criticised to be overly complex and 

expensive for most purposes and users, thus limiting the full benefits gained from 

hyperspectral remote sensing. Therefore, it is essential to develop specific multispectral 

sensor configurations and analytical techniques optimised particularly for the remote sensing 

of road infrastructure. This would improve general knowledge of the spectral properties of 

roads and the techniques available for road extraction. 

 

Hyperspectral remote sensing may be combined with object-oriented image classification 

approaches to improve the accuracy of an analysis. Object-oriented approach as well as 

spatial, textural or contextual information may provide further significant improvements to 

analysis and help to overcome spectral confusion between specific classes such as asphalt 

roads and specific roof types (Herold et al. 2003a). In Noronha et al. (2002), the object-

oriented approach is performed via segmentation using eCognition software. 
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5 DATA 

5.1 REMOTE SENSING AND GIS DATA 

The SPOT XS satellite imagery was applied to the preliminary examination of the Taita Hills, 

to increase basic knowledge of the study area and its road infrastructure and to prepare for the 

first field work period, conducted in January-February 2004. The satellite imagery was used 

in the visual interpretation (Chapter 6.6) and in the field spectrometry analysis (Chapter 6.8) 

as well. The main satellite image data of the study is from 2003, it has 20 m spatial resolution 

and spectral resolution of 4 bands: Green (G), Red (R), Near infrared (NIR) and mid infrared 

(MIR). The characteristics of the SPOT satellite image data are shown in Table 3. 

 

Table 3. Characteristics of the SPOT satellite image (143-357). 
Sensor SPOT 4 HRVIR1

Year 2003

Date October 15th

Bands G, 0.50 - 0.59 µm

R, 0.61 - 0.68 µm

NIR, 0.78 - 0.89 µm

(MIR, 1.58 - 1.75 µm)
FWHM 5 nm
Spatial resolution 20 m  

 

The main remote sensing data of the study are airborne digital camera data acquired in 

January 2004 using a true-colour (B, G, R) NIKON D1X digital camera. The aerial 

photography was captured on January 27th 2004 between 10.25 and 11.13 GMT, and it 

consisted of total 599 digital images. The 11 flight lines had approximately 60 % overlap and 

40 % sidelap, and a camera opening angle of 78º. The secondary data digital image mosaic 

was constructed in EnsoMOSAIC and ERDAS IMAGINE software from the primary airborne 

digital camera data. The characteristics of the original "raw" airborne data and aerial image 

mosaics are shown in Table 4 and Table 5. The main analysis of this study was based on the 

aerial image mosaic data. 

 

In addition, the cartographic data produced by the Survey of Kenya (1991) were used in two 

ways in this study. Firstly, the two paper map sheets, Kenya 1:50 000 Topographic Map of 

the Taita Hills and Mwatate were exploited as such, mainly during the both field periods to 

assist the field work along with a paper print of the satellite image data. Secondly, six paper 
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map sheets were scanned and digitised in order to generate a digital geodatabase of different 

map information in forms of vector data layers such as hydrography, administrative area 

boundaries and classified road network (Broberg & Keskinen 2004). The road network layer 

is the most essential auxiliary dataset of the geodatabase for this study. 

 

Table 4. Characteristics of the NIKON D1X airborne digital camera data. 
Camera focal length DC Nikon D1X

Date 27th January 2004

Bands B, G, R

Camera focal length 14 mm

IFOV 78°

Resolution 3040 x 2016 pixels

Ground resolution ~ 0.21 - 0.48 m

Type JPEG image  
 

Table 5. Characteristics of the NIKON D1X digital image mosaic. 
Images 576

Flight lines 11

Type TIFF (converted to IMG)

Resampled pixel size 0.8 m

RMS error 1.11

Projection Transverse Mercator

Spheroid Clarke 1880

   Datum Arc 1960

   Scale factor at central meridian 0.999600

   Longitude of central meridian 39:00:000000 E

   Latitude of origin of projection 0:00.000000 N

   False easting 500000.000000 m

   False northing 10000000.000000 m  
 

5.2 FIELD WORK DATA 

An essential part of this study is the field work data collected during the two field work 

periods in the Taita Hills and Nairobi. The first field work was carried out in January-

February 2004 in context of the field excursion to the Taita Hills (Pellikka et al. 2004) and the 

second was conducted in January 2005 with Professor Petri Pellikka, PhD student Barnaby 

Clark and MSc student Nina Himberg. 

5.5.1 ROAD POINT DATA 

During the first field period general knowledge was increased and detailed information was 

gained about the road infrastructure and transport of the Taita Hills. The field work was 

mainly carried out concurrently with MSc student Katja Masalin who was collecting various 
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land cover data for her own Master's thesis (Masalin 2005). General observations and field 

notes about the road transport and more detailed field measurement about the road 

infrastructure were made on foot and utilising an off-road vehicle and GPS equipment that 

together enabled an extensive field study conducted in the study area.  

 

The main aim of the first field work period was to collect an extensive in situ road verification 

dataset on a few selected study sites. The ground truthing dataset consist of 150 road points 

which encompass roads’ spatial and attribute data, such as coordinate information, road width, 

surfacing material and condition, surrounding land use and terrestrial photograph. The road 

points were selected on the basis of the road classification of Kenya 1:50 000 Topographic 

Map data and according to different land use where roads exist, so that each road class would 

be represented within the various surrounding land use patterns. The initial purpose was to 

apply the field work data to the remote sensing analysis and evaluation of the results. 

However, the quite limited capacity of the hardware and software set up limits to the extent of 

the image mosaic applied to the digital analysis and hence, only a minority of the collected 

road data were used eventually. Instead, the analysis was implemented with samples and 

spectral signatures, since there was sufficient spatial and spectral resolution to identify objects 

on the imagery. In addition, the accuracy assessment was conducted with random sample 

points calculated by the software. The road point data were applied to assist the mapping and 

updating of the Taita Hills road infrastructure.  

5.5.2 FIELD SPECTROMETRY 

During the second field work period field spectrometry data were obtained to study the 

spectral characteristics of different road surface types. The reflectance values were measured 

for tarmac, concrete, gravel, and earth roads of varying characteristics and conditions. The 

field spectrometry was conducted using an ASD FieldSpec® HandHeld UV/VNIR (325-1075 

nm, 3.5 nm spectral resolution) spectroradiometer, and the acquired data was post-processed 

afterwards. 

5.3 OTHER DATA 

Advantage was also taken of various qualitative data in this study. Field notes were collected 

and terrestrial photographs taken during the field periods. Furthermore, relevant literature and 

reports of Kenyan libraries were collected in Wundanyi, Voi and Nairobi. During the whole 

preparation phase of the thesis, various publications, journals and reports found in Finnish 

libraries and Internet were utilised as well.  
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6 METHODOLOGY AND ANALYSIS 

6.1 SOFTWARE 

This thesis is strongly methodology-oriented based on remote sensing (RS) and geographic 

information systems (GIS). Hence, the software utilised are a fundamental part of the whole 

process of this research, especially the methods and the analyses implemented.  The RS and 

GIS software generally have different functions, operational principles and data formats to 

process and analyse data and therefore, it is required to select appropriate software for 

different purposes. The principal RS software applied to this context are ERDAS IMAGINE 

(8.7), EnsoMOSAIC (5.0) and eCognition Professional (4.0). In addition, the GIS software 

ArcGIS (9.1) was used in this study. Field spectrometry measurements were collected with 

FieldSpec® RS² software. 

6.2 PRE-PROCESSING OF THE SATELLITE IMAGE DATA 

When working with remotely sensed data, digital imagery usually needs to be pre-processed 

before the data can serve any useful purpose. Pre-processing operations normally precede 

further manipulation and analysis of the image data to extract specific information and to 

correct image data for distortions derived from the image acquisition process (Lillesand & 

Kiefer 2000: 470-488). Jensen (1996: 107) makes a difference between systematic and 

constant internal errors created by the sensor itself, and unsystematic external errors caused 

by platform perturbations and the modulation of atmospheric and scene characteristics. 

Radiometric and geometric errors are the two main types of errors encountered in remote 

sensing imagery. Radiometric errors present a problem of skewed DN values, and geometric 

errors bring about a distortion of the pixels’ locations in relation to terrain. The aim of the 

geometric and radiometric corrections is to remove or reduce the source of errors in digital 

imagery that introduce distortions in quantitative studies such as land cover classifications and 

spectral analyses. 

 

A number of pre-processing operations were implemented to the satellite imagery by PhD 

student Barnaby Clark and MSc student Katja Masalin. The visual interpretation and the field 

work were conducted with the imagery processed by Masalin. Respectively, the imagery pre-

processed by Clark was applied to the spectrometry analysis. The pre-processing methods are 

more comprehensively described in Pellikka (1998), Clark & Pellikka (2005) and in Masalin 

(2005).  The pre-processing of the airborne digital camera data is reviewed below. 
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6.3 PRE-PROCESSING OF THE AIRBORNE DIGITAL CAMERA DATA 

The corrections of the airborne digital camera data were performed by the author himself 

since the digital camera data were the main data of this study. In this chapter, the background 

of the errors concerning digital airborne camera data is given and the principles of the 

correction methods are introduced. In addition, the implementation is presented with more 

detail on each step. 

 

The principal aim of the pre-processing was to produce accurate digital image mosaics 

corrected from the various errors. In general, radiometric errors result in a mosaic with clearly 

seen seams of the individual images, and geometric errors occur as discontinuities of some 

terrain features such as roads (Holm et al. 1999). The corrections are a prerequisite for the 

further analysis of this study - both for quantitative classification techniques and for visual 

analysis. In addition, the accuracy of the digital image data is needed for the examination of 

the results with other data, such as the SPOT image data, the field work data and the vector 

layers. 

6.3.1 RADIOMETRIC ERRORS AND CORRECTIONS 

Radiometric errors of the remotely sensed data are caused by different factors: the remote 

sensing system or its detector may not function properly or the energy recorded by the sensor 

is intervened due to environmental attenuation (Jensen 1996: 107). The major sources of 

environmental attenuation are atmosphere attenuation caused by scattering and absorption in 

the atmosphere, and topographic attenuation (ibid.). In addition, such factors as viewing 

geometry, changes in scene illumination and instrument response characteristics affect the 

magnitude of radiance measured by the sensor and inflict errors in the data (Lillesand & 

Kiefer 2000: 477). In case of the airborne camera data acquired from low altitudes and using 

wide-angle lenses, the variations in the viewing geometry are typically greater and the data is 

less influenced by atmospheric effects than in case of satellite imagery (ibid.). 

 

Topographic errors caused by slope and exposition of rough terrain or mountainous areas 

result in varying brightness values between the objects of same land-cover class due to their 

varying orientation and the sun angle (Teillet et al. 1982). The distortions cause remarkable 

problems e.g. to the forest classifications and, therefore, topographic correction methods such 

as illumination compensation are needed to improve quantitative classification results of the 

data (Pellikka 1998). On the other hand, a simple topographic normalisation may not 

necessarily improve significantly the results of the classification (Tokola et al. 2001). In 
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addition, over-corrections may occur on poorly illuminated slopes, and the correction should 

be adjusted for each wavelength area individually which may be impractical against the 

overall benefits of the correction procedure. Consequently, no topographic corrections were 

implemented in this context due to the moderate quality of the digital elevation model (DEM) 

derived in EnsoMOSAIC. 

 

The main problems in the digital analysis of aerial photographs are the effects of bidirectional 

reflectance distribution function (BRDF) and light falloff - also termed as exposure falloff - 

that cause brightness variations in aerial photographs and DN values of the image pixels to be 

dependent on their location in the image (Tuominen & Pekkarinen 2004). The presence of 

these effects induces errors in the brightness values of uncorrected remote sensing data. 

Without the corrections, different parts of the image are not spectrally comparable and, 

respectively, the corrections increase the classification accuracy of the data (Pellikka 1998). 

Therefore, it is necessary to use the BRDF and light falloff corrections for the purpose of the 

quantitative analysis applied to this context.  

 

The light falloff effect is a combination of various optical and geometric factors, and 

vignetting effects caused by internal shadowing within the camera optics, film or charge-

coupled devices (CCD) sensor (Pellikka 1998: 12). Modern lens designs have been able to 

reduce the concentric effect (ibid.). The light falloff is associated with the distance of an 

image point from the image centre, and the exposure is at maximum at the centre and 

decreases with the radial distance from the centre towards the borders of the image (Lillesand 

& Kiefer 2000: 66). Hence, edges and corners are darker than the centre areas of the image 

and similar surfaces may not have uniform values in different parts of the uncorrected image. 

The light falloff exposure can be reduced e.g. by placing anti-vignetting filters in front of 

camera lens or by using a correction model to normalise the light falloff effect. The latter was 

applied to this context. 

 

The BRDF effect is the occurrence of brightness variations of similar objects in different parts 

of the image due to the different illumination conditions, the geometrical and spectral 

characteristics of sensor, the atmospheric conditions and the target characteristics. The BRDF 

is a mathematical description of the distribution of radiance at all possible different 

observation and illumination angles (Slater 1980). The magnitude of the BRDF effect is a 

combination of the different sensor, sun and target characteristics. The BRDF varies for all 

different combinations of wavelength areas, illumination and viewing angles, and with 
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different surface characteristics and topography (Lillesand & Kiefer 2000: 31; Pellikka et al. 

2000; Tuominen & Pekkarinen 2004). The BRDF effect causes the phenomenon that similar 

objects may have different spectral characteristics in different parts of the image. Objects in 

the direction of incoming solar radiation expose their shadowed parts to the sensor, and those 

in the opposite direction expose their well-illuminated sides (Holopainen & Wang 1998). As a 

result, the objects in the solar side of the image appear darker than the objects in the opposite 

side of the image.  

 

The BRDF effect can be reduced with a variety of the correction models (e.g. empirical, 

physical or regression models) implemented on airborne or satellite image data. The Pellikka 

BRDF correction procedure (Pellikka 1998: 45-49), that is a mixture of physical and 

empirical correction models, was applied to this study. 

 

6.3.2 GEOMETRIC ERRORS AND CORRECTIONS 

In general, geometric errors of the remote sensing data are caused by different characteristics 

of sensor, imaging and environment. Geometric errors usually involve a range of systematic, 

predictable distortions and non-systematic, unpredictable distortions (Jensen 1996: 124). 

Normally, the systematic distortions are first considered and random errors afterwards 

(Lillesand & Kiefer 2000: 474). Geometric distortions derive from different sources; from 

sensor characteristics, aerial photography and environmental factors such as topography and 

atmospheric conditions. Geometric correction is defined as the process of “transformation of a 

remotely-sensed image so that it has a scale and projection properties of a map” (Mather 

2001: 75). Geometric corrections are necessary for the purpose of applying remote sensing 

data to further analysis and GIS operations. Jensen (1996: 124) makes a difference between 

the errors that can be corrected using data and knowledge of internal sensor distortion, and 

those that must be corrected with a sufficient number of ground control points (GCP) on the 

terrain. In this study, however, GCPs were not applied to the correction procedure. 

 

The geometric corrections were performed with the camera calibration parameters including 

the focal length and the principal point of the digital camera and the distortion coefficients of 

the CCD sensor of the camera. These parameters were applied to the image rectification from 

image coordinates to map coordinates to correct the geometric errors caused by internal 

sensor distortions. The actual image rectification was performed in the Bundle Block 

Adjustment (BBA) of the EnsoMOSAIC software. The geometric distortions of scale and 
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location caused by aircraft roll, yaw, pitch and decrease of pixel size frame nadir point to the 

edges and off-axis areas (Pellikka 1998: 5) were not taken into consideration since these data 

were not available in this context. 

6.3.3 IMPLEMENTATION OF THE CORRECTIONS AND MOSAICKING 

The airborne digital camera data pre-processing was implemented in ERDAS IMAGINE and 

EnsoMOSAIC software through the different stages of the radiometric correction methods, 

image rectification and mosaicking. The pre-processing work flow is shown in Figure 22. The 

procedure resulted in a geo-referenced, radiometrically corrected digital image mosaic. 

 

 

Figure 22 The work flow the of airborne digital camera data pre-processing. 
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The airborne digital camera data acquired in the aerial photography were in the digital 

compressed format of JPEG images. The first step of the pre-processing was to select 

appropriate images for the image mosaic construction and to discard inappropriate images. In 

total, 576 digital images were approved for the mosaicking while 23 images were discarded 

since they had poor quality due to cloud cover. Meanwhile, the original CRD file was set up 

and verified so that the flight line and image information details were correct and logical with 

the imagery chosen for the actual image mosaic construction. The CRD-file is an output file 

of aerial photography using NavCam software, and it includes flight information which is the 

input coordinate file for block creation in EnsoMOSAIC software (StoraEnso 2003). 

 
The next step was to conduct the light falloff normalising method for the individual images 

with a modified correction procedure after Pellikka (1998: 39-41). The two phases of the 

correction were implemented in the ERDAS IMAGINE Model Maker using the unpublished 

model created by Janne Heiskanen & Petri Pellikka and further modified by Pekka 

Hurskainen and Pertti Parviainen (Hurskainen 2005: 54-55). At the first stage, the zenith view 

angle ( θ ) was derived for each pixel of one raw image from the equation: 
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, where  θ = viewing angle between the optical axis and the ray to the off-axis point 
   f = focal length 

r = distance between the pixel in the off-axis position and that at the optical axis 
(Pellikka 1998: 40). 

 

The focal length ( f ) of the camera was obtained from the camera calibration parameters. The 

zenith view angle is the viewing angle between the optical axis and the ray to the off-axis 

point, in other words the angle between the sensor, the zenith and the target pixel. The zenith 

view angle image models the increase of the light falloff effect from the principal point to the 

borders of the image (Figure 23). 

 

Since light falloff is a systematic lens-related effect, the calculation of one zenith view angle 

image can be applied to all images taken during that flight and with the same camera. Hence, 

the correction of the whole imagery was implemented in a batch created by Hurskainen 

(2005) which reduced the processing time of the first phase. 
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Figure 23. The zenith view angle image calculated for the DC Nikon D1X camera and for the 
actual light falloff normalising method. 
 

At the second stage, the actual removal of the light falloff effect was conducted for each 

digital image in a batch applying the correction algorithm for normalising the brightness 

values of each pixel: 
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θ
n

E
E
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, where oE = DN of the pixel in the off-axis position 

θE = DN that would have resulted if the pixel had been located at the optical 
axis 

ncos = correction factor for the different aperture setting (Pellikka 1998: 41; 
Lillesand & Kiefer 2000: 68). 

 

The original raw image, the zenith view angle image and correction factors for each image 

band were us as input parameters. Since the light falloff effect varies between different 

wavelength areas, correction parameters had to be defined separately for each channel of the 

multispectral images (Pellikka 1998: 41). The correction factors 0.63 (R), 0.29 (G) and 0 (B) 

were derived from the experiment of Hurskainen (2005: 55) since the same digital camera 

device was utilised in his study. 

 

The following steps were implemented in EnsoMOSAIC which is a special software designed 

for semi-automatic creation of geo-referenced, orthorectified aerial image mosaics from a 

group of individual images consisting of several flight lines (Holm et al. 1999; StoraEnso 

2003). EnsoMOSAIC is a complete set of hardware and software from flight planning to 

mosaics creation, and it enables the user to produce image mosaics without GCPs in the case 
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that accurate GPS data has been collected during the flight operation (StoraEnso 2003: 3). In 

this study, the mosaic creation was implemented with GPS data, whereas optional GCPs were 

not applied to the correction procedure. 

 

The image linking provides the initial orientation of two image coordinate systems in relation 

to each other (StoraEnso 2003: 19, 27). An ideal link between two images is a formation of 

the nearest large, open triangle of image coordinates of three objects so that the objects are 

detectable on both images and located on the entire overlapping area of the images (ibid.). 

Hence, a practical link is a distinct object such as building, road junction, edges of different 

land uses etc. In this study, the image linking that connects all adjacent image pairs together, 

was performed as a manual operation, since no camera orientation parameters (roll, pitch and 

yaw) were available for automatic linking. In general, automatic linking by means of a mean 

ground altitude is well suited for the purpose of relatively flat target areas whereas the support 

of a DEM is a more appropriate method for hilly or mountainous areas (StoraEnso 2003: 25). 

However, manual image linking is often the most reliable – but also the most time-consuming 

– method to define functional links separately for low and high altitude areas. 

 

Good links are a prerequisite for the next working step which is the tie point measurement 

(StoraEnso 2003: 28). Tie points are clearly identifiable objects on at least two overlapping 

images and usually between three and six tie points per image pair, and their function is to 

connect separate images together and provide image coordinates for the actual image 

rectification of the Bundle Block Adjustment (BBA) (ibid.). Figure 24 shows the tie points of 

four images of two adjacent flight lines. The distribution of the tie points indicates common 

points of the images and consequently the success of the following image rectification 

process. In EnsoMOSAIC, tie points can be measured either manually or by means of 

automatic tie point computation with optimum search parameters. In this case, the result of 

the automatic tie point measurement was improved afterwards with the manual tie points that 

were added to several image pairs of the block, especially to the most problematic areas that 

failed the automatic tie point search observations. All in all, 136947 tie points were derived 

from the automatic and manual tie point measurement. 
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Figure 24. Tie points (red crosses) of  the four images of two adjacent flight lines in 
EnsoMOSAIC software. The flight lines and the position of the individual images are shown 
on the right side in the image index window. 

 

After an adequate amount of the tie points was measured using both the methods described 

above, the actual image rectification was run by the BBA. The BBA is “an iterative 

mathematical process to solve the orientation of the images and the location of the perspective 

centres simultaneously for a large image block” (StoraEnso 2003: 2). The process combines 

the bundles of adjacent images through the common object points seen on these images 

resulting in one large block of images (ibid.). The camera calibration data is a prerequisite for 

the success of the BBA. Furthermore, The BBA process enables image rectification into a 

ground coordinate system and creation of the image mosaic. After each iteration round of the 

BBA, tie points with the highest residuals are deleted and new tie points are added 

simultaneously to the spots of lacking observations where necessary. The block adjustment 

and these other steps are then repeated and the value of minimum single residual parameter 

reduced until the acceptable adjustment error is obtained (Figure 25). In the creation of this 

image mosaic, the block adjustment was started with the minimum single residual parameter 

of 10 and reduced to the value of two. The adjustment error, root mean square error (RMS) of 

the final block for the creation of the image mosaic was 1.11 and maximum residual 2.0. 
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Figure 25. The BBA process after the last iteration round that led to an acceptable result for 
DEM calculation and mosaic formation. 
 

One of the most essential parameters of the BBA is the relative GPS weight value of air-GPS 

coordinates which has a great influence on the speed of the whole BBA iteration process. 

High weight means high accuracy and reliability of the coordinates, and vice versa (StoraEnso 

2003: 36). In this case - as there were no GCPs available to improve the accuracy of the 

mosaic - it was necessary to use a relatively high weight value of the GPS coordinates. The 

GPS weight value is derived from the equation: 
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, where W = GPS weight value 
x = accuracy of the air GPS coordinates 

 

The accuracy of the air-GPS was estimated to approximately 5 meters which means that: 

447.0
5

1
==W  

 

Since the value of x was an estimate, the GPS weight value was set to 0.44 so that the 

calculated maximum value of the GPS accuracy was not exceeded.  

 



 

  75 

After the block adjustment, a DEM with 1-meter ground resolution was derived in 

EnsoMOSAIC based on the elevation values of the 136947 tie points measured in the 

automatic and manual tie point search. The computation of the DEM has a supportive 

function to improve the mosaic quality in the mosaic resampling in which the terrain high 

values are interpolated from the DEM file for each pixel of the mosaic (StoraEnso: 4). 

 

The image mosaic formation was then performed from the original image data. The mosaic 

was created applying the DEM file and the BRDF correction method proposed by Pellikka 

(1998: 45-49). The input correction parameters were derived from the special sun correction 

file that specifies correction factors for each channel individually. The correction parameters 

were 1.20 (R), 1.00 (G) and 0.80 (B) specified for the circumstances of Kenya (StoraEnso 

2003: 63). In addition, an image mosaic without the BRDF correction was generated but this 

mosaic was not applied to further image analyses. 

 

It was found by using trial and error method that the maximum size of the image mosaic, that 

is possible to create in EnsoMOSAIC (5.0), is approximately one gigabyte due to the software 

and hardware limitations. Consequently, 0.74 meter pixel size was found to be the highest 

possible spatial resolution for the image mosaic of this amount of images.  Hence, the mosaic 

was resampled to 0.74 meter pixel size using histogram matching between three images and 

bilinear interpolation methods (Figure 26). Afterwards, the mosaic was resampled to 0.80 

meter pixel size. The total area of the created image mosaic is approximately 80 km², the 

greatest length approximately 14 km and the greatest width 8 km. 

 

Finally, the image mosaic (TIFF file) was imported into ERDAS IMAGINE (IMG-file) where 

it was re-projected to the same coordinate system as the topographic maps, the satellite image 

data and the vector data (Transverse Mercator / Clarke 1880 / Arc 1960). It was later noticed 

that the entire image mosaic could not be used as such in eCognition software due to the very 

big size of the mosaic file, since the software cannot run segmentation and classification 

operations with such big data file. Hence, three smaller, more practical image subsets were 

made from the 0.80 pixel size image mosaic for the purpose of testing segmentation-based 

classification. The subsets were defined over the test sites of Mwatate (2.5 km x 2.0 km), 

Dembwa (3.0 km x 3.0 km) and Wundanyi (2.7 km x 3.5 km) (Figure 27).  
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Figure 26. The final output derived from the EnsoMOSAIC mosaicking with the applied 
BRDF correction. 
 

 

Figure 27. The extent of three test site subsets. The SPOT 2003 image is shown in the 
background. 
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The aerial image subsets of the test sites were subject to visual interpretation and pixel-based 

classification as well, to compare the results of these three different approaches with each 

other. The work flow of the different approaches for road extraction is presented in Figure 28. 

 

 

Figure 28. The work flow of the different road extraction methods applied to this thesis. 
 

6.4 PIXEL-BASED ROAD EXTRACTION 

The three aerial image subsets were classified in ERDAS IMAGINE applying its maximum-

likelihood supervised classification function. Supervised classification is a pixel-based 

technique in which the image analyst controls the pixel categorisation by specifying of 

representative samples of known land cover types, called training areas. Generally, from five 
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to ten samples is a minimum amount of samples to obtain reliable classification results 

(Campbell 2002: 336). The training sites are used to train the classification algorithm of the 

image to assign every pixel to the class of which it has the highest likelihood of being a 

member based on mathematical criteria (Jensen 1996: 197). A typical supervised 

classification procedure can be divided into the three basic steps: training stage, classification 

stage and output stage (Lillesand & Kiefer 2000: 535-566). 

 

Since there were not enough ground truth data available for every class of the classification, 

the training stage was conducted from the imagery with the Region Grow –tool by defining 10 

signatures of maximum 300 pixels area and less than 10.00 spectral Euclidean distance from 

the seed pixel for each predefined class. The signatures of the same class were then merged 

for the classification stage which was performed applying the maximum likelihood classifier. 

The maximum likelihood algorithm assumes that the training data statistics have normal 

distributions and it evaluates both the variance and covariance of the pixels, calculates 

probability density functions for each spectral category and then classifies the pixels by the 

highest probability value (Lillesand & Kiefer 2000: 541- 544). The maximum likelihood 

classifier is one of the most accurate and reliable so-called hard classification methods 

available nowadays. For the output stage, the classes of non-interest were combined by 

recoding them to the same class and the final output image was consisted of three informative 

classes: tarmac road, earth road and non-road. Furthermore, the data of the two road classes 

were converted into polygons in ArcGIS. The accuracy of the classification results was 

assessed in ERDAS IMAGINE (see Chapter 8.3). 

 

6.5 OBJECT-ORIENTED ROAD EXTRACTION 

The object-oriented road extraction was implemented through the different stages in 

eCognition: segmentation, building a class hierarchy and fuzzy classification. Furthermore, 

classification-based segmentation, vectorisation and export of the results were involved to the 

object-oriented image analysis. 

6.5.1 SEGMENTATION 

In eCognition, multi-scale segmentation is the first phase of the object-oriented approach to 

create meaningful, homogenous areas for the following classification that is conducted 

applying fuzzy logic of nearest neighbourhood (NN) classifier or membership functions to the 

procedure. 
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The hierarchical structure of image objects is created in eCognition applying different scale 

parameter and composition of homogeneity criterion, so that the image information can be 

represented in several scales simultaneously by different object layers. The scale parameter 

determines the maximal allowed heterogeneity of the objects and it is used to adjust the 

average size of image objects (Baatz & Schäpe 2000). The homogeneity - also referred as 

minimised heterogeneity - criterion is a combination of colour and shape properties, and it is 

used to control the similarity of the adjacent image objects (Definiens 2004). 

 

Multi-scale segmentation was not used for this study since there were only various roads in 

focus and one segmentation level (Level 1) was sufficient for the purpose of representing 

these object classes. The segmentation involved a lot of experiment, and several 

segmentations with different combinations of scale parameter and homogeneity criterion were 

performed before the final settings were selected. The segmentation settings were adjusted 

mostly by trial and error so that emphasising of the shape factor would generate as large 

elongated regions as possible representing roads but still separating different road type 

segments from each other and from surrounding land cover.  

 

Table 6 and Figure 29 present segmentation results of different combinations of homogeneity 

criteria with scale parameter 8 tested in the segmentation process of Mwatate subset. Consider 

the effect of increasing shape factor from A to B: when more value is given to the shape of the 

segments, less weight is put on the spectral information and for instance, the road segments do 

not follow the edges of roads but rather consist of other land cover as well. In the end, two 

segmentation levels were created since the second one (Level 2) was constructed at the later 

stage for the purpose of segmentation-based classification (see chapter 6.5.3). 

 

Table 6. Segmentation parameters tested  in Mwatate subset. 

Scale parameter Shape factor Compactness Smoothness

A 8 0.1 0.5 0.5
B 8 0.9 0.5 0.5
C 8 0.5 0.9 0.1
D 8 0.5 0.1 0.9  
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Figure 29. Segmentation test results using different combinations of homogeneity criteria. 
Scale parameter of each option is 8. See also Table 6. 
 

Each of the three subsets was segmented mainly with the same final settings that were found 

appropriate in every case to generate meaningful road segments. Only the scale parameter was 

adjusted slightly between the three subsets: the segmentation of the Wundanyi and Dembwa 

subsets were performed with the scale parameter 10 whereas the Mwatate with scale 

parameter 8 (Figure 30). Each subset was segmented with the shape factor 0.5 and the 

smoothness 0.9. In general, the shape criterion consists of two parts: compactness and 

smoothness. When shape criterion is given more value, the shape homogeneity of the image 

objects is improved and the smoothness and the compactness are optimised which results in a 

more compact form objects with smoother borders (Definiens 2004: 79). 

 

 

Figure 30. The final segmentation settings chosen for the segmentation of the Mwatate subset. 

A B

C D
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6.5.2 CLASS HIERARCHY AND IMAGE CLASSIFICATION (LEVEL 1) 

Once segmentation was performed, the next step was to build a class hierarchy for the 

classification scheme. In eCognition, the class hierarchy of all classes and their class 

descriptions is the knowledge base for the supervised classification, in which the objects 

derived from the segmentation can be classified by their physical properties and/or semantic 

relationships using a fuzzy approach of nearest neighbour (NN) classifier or membership 

functions (Hofmann 2001a; Definiens 2004). Each class of the class hierarchy can be 

described by fuzzy rules based either on one-dimensional membership functions or on 

multidimensional NN classifier using training areas called sample objects which the user has 

to determine. In this context, the class hierarchy was built with three abstract parent classes 

and seven active child classes. In addition, the eighth object class “railway” was created for 

the Mwatate subset based on the imported thematic layer (Figure 31). 

 

 

Figure 31. The inheritance class hierarchy of the Mwatate. 
 

The feature view function of the software was taken advantage of while creating the class 

hierarchy and considering the most suitable class descriptions for the classification. Feature 

view allows one to display, analyse and compare one feature at a time for all objects in the 

scene in order to know which attributes are suitable for separating the classes to be specified 

(Definiens 2004: 218). Beforehand, it was hypothesised that the generic shape features would 

be the most suitable features for distinguishing elongated road segments from the other object 

classes. For instance, road objects should have large values of shape index and small values of 
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density (Song & Civco 2004). Furthermore, it is useful to classify elongated road objects by 

describing their shape by form criteria and subsequently their different spectral properties 

(Hofmann 2001b). However, with the feature view and with the other tools of eCognition 

(e.g. sample editor and 2D feature space plot) it was noticed that the shape features would not 

be sufficient alone to separate roads from the other segments of their surroundings. Hence, 

several other features were considered and the best options were then selected for the 

classification scheme.  

Since the NN classifier can operate more effectively in multidimensional feature space than 

membership functions and because in many cases the classes can be distinguished more 

effectively when operating in the same feature space, the standard NN classifier was selected 

for the classification process. The feature space of the standard NN is defined for the entire 

project and thereby for all classes to which the expression is assigned (Definiens 2004: 230). 

The membership function was only applied to distinguish the railway based on the thematic 

layer. The features chosen for the Standard NN classification scheme are shown in Figure 32.  

 

 

Figure 32. The Standard NN classification scheme. 
 

The classification process of the subsets was conducted selecting 50 representative sample 

objects for each object class of the Dembwa subset and 40 samples for each class of the 

Mwatate and Wundanyi subsets. The sample objects were inserted equally throughout the 

image subsets and for each object class. At the beginning, only a few samples were set per 
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object class and the first classification was then run. Thereafter, more samples were inserted 

so that some misclassified samples were moved into their proper class and the classification 

was run again. This step was repeated and the classification was run iteratively until the 

results were satisfactory. 

 

In eCognition, it is possible to group even very different classes to a superior class of common 

semantic meaning (Definiens 2004). After the classification process was finished, the 

semantic grouping was applied to combine the classes of non-interest into a common “non 

road” object class. Finally, the clarified classification results were exported to ERDAS 

IMAGINE where the accuracy assessment was conducted (see Chapter 8.4). 

6.5.3 CLASSIFICATION-BASED SEGMENTATION AND IMAGE CLASSIFICATION (LEVEL 2) 

Since the results of the Level 1 classification were not satisfactory, the classification-based 

segmentation was carried out by defining structure groups. A structure group is a collection of 

classes representing the same structure in an image and can consist of classes defined for 

different levels in the image object hierarchy (Definiens 2004: 148). Firstly, separate structure 

groups were built for both road classes and the classification-based fusion was then conducted 

to create new segmentation level of merged road image objects. In the classification-based 

object fusion, all adjacent segments of the same road structure group were merged into one 

new image object representing an entire road area. Meanwhile, the segments of other object 

classes remained as before Notice that in Figure 33 merged road segments on Level 2 are 

considerably larger than on Level 1 whereas all other segments have remained unchanged 

 

 

Figure 33. Segmentation results of Level 1 (left) and Level 2 (right). 
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The class hierarchy similar to the semantic structure of the Level 1 was created (see Figure 

31, Level 2) and the fuzzy membership functions were defined for each parent and child class 

of the inheritance hierarchy. The road parent class was differentiated from the “non road” 

class by the line features based on the sub-objects of the Level 1 (Figure 34), and the road 

child classes (tarmac road and earth road) by the existence of sub-objects of Level 1 (Figure 

35). The Level 2 segmentation was then classified using contextual information of class-

related features so that the Level 1 was taken into account in the classification process. Class-

related features refer to the classification of other image objects situated at any location in the 

hierarchy, and this approach makes possible classifications defined by vertical distance 

relationships of super- and sub-objects or by horizontal distance to neighbour objects 

(Definiens 2004). 

 

 

Figure 34. Line features of the Level 2 road parent class. 
 



 

  85 

 

Figure 35. The existence of tarmac sub-objects of the Level 1. 
 

6.5.4 AUTOMATIC VECTORISATION 

Once the second classification was finished, eCognition’s automatic vectorisation was 

performed for the vector representation of the export results by creating polygons from the 

objects of Level 2. In eCognition, it is possible to create polygons after the segmentation 

procedure for each image object to display their outlines, to compute different shape features 

with them or to export them to GIS. In this case, the main aim was to create polygons for the 

objects of the two road classes. Thereafter, skeletons were created in conjunction with 

polygons (Figure 36). Skeletons are advanced object features based on polygons and they are 

practicable for elongated object extraction where they are used for the detection of roads’ 

centrelines and export to GIS (Benz et al. 2003). By creating skeletons, it is possible to 

describe the inner geometrical structure of an object more accurately (Definiens 2004). 

 

Finally, the results of the Level 2 segmentation-based classification were exported for further 

analysis and use in GIS. Besides the classification result itself, the objects shapes of both road 

classes were exported in format of raster polygons based on the outlines of the pixel borders, 

and line objects based on the skeleton lines. The classification accuracy assessment was 

conducted in ERDAS IMAGINE the same as the Level 1 classification evaluation (see Chapter 

8.4). 
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Figure 36. Skeletons of the tarmac road polygons. 
 

6.6 VISUAL INTERPRETATION 

The image enhancement operations were implemented in ERDAS IMAGINE and the actual 

visual interpretation in ArcGIS. The contrast adjustment and filtering operations were applied 

to the satellite image data to improve the appearance of the roads for the visual analysis. By 

contrast, the digital image mosaic subsets were not enhanced, since the spatial resolution of 

the original image data was adequate for the accurate detection of roads.  

 

Various contrast enhancements, such as histogram equalisation and linear contrast stretch, 

were tested by trial and error method on the SPOT image data. A number of convolution 

filters were tested alone and along with different contrast enhancement options. In  Figure 37, 

the option A shows the image without any enhancements. The option B is the data with linear 

contrast stretch and 3x3 summary filter. The option C shows the data with 3x3 edge detector 

filter, and the option D with histogram equalisation and 3x3 edge enhance filter.  A number of 

high-pass filters, edge enhancer filters and edge detector filters were tested while low-pass 

filters were excluded from the image enhancement operations. 
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Figure 37. Various contrast enhancements tested on the SPOT image data. 
 

After some experiment, the best options were chosen for the visual analysis of the roads. The 

linear contrast stretch with 3x3 summary filter was found to be the best combination to 

improve the appearance of the roads in the imagery. At this phase, the image adjustments 

were not done via lookup table operations as earlier but they were applied to the image file to 

permanently change the DN values of the original image data and to create appropriate image 

data for the visual analysis in ArcGIS. On the contrary, edge detectors were not exploited at 

all when producing the final raster image outputs for the visual interpretation. 

 

In practise, the visual interpretation was carried out by digitising roads manually on the image 

subset areas and storing the created data as ESRI Shapefile vector layers. Roads were 

digitised along the centre lines as polyline features that were connected to each others with the 

snap mode. At some locations only unconnected stretches were digitised if it was not possible 

to identify the road line completely. In case of the SPOT image analysis, roads were digitised 

at a very general level, when they were visible and identified at least somehow. The whole 

SPOT satellite image and the original aerial image mosaic over the Taita Hills were also 

considered in the visual interpretation. In addition, the scanned topographic maps, the existing 

GIS database road layer and the road point data were applied to assist and verify the detection 

process in spots where roads were not clearly identifiable. 

 

A B

C D
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6.7 GENERATING AN UP-TO-DATE ROAD INFRASTRUCTURE DATA LAYER 

The mapping and the updating tasks were implemented to correct and modify the following 

weaknesses and errors of the existing road data: 

 

• The existing vector road data layer is out-of-date since it was created (Broberg & 

Keskinen 2004) from the Kenya 1:50 000 Topographic Maps information that is 

based on aerial photography conducted in 1988 and 1989 (Survey of Kenya 1991). 

• The existing road data is generalised and needs to be specified. The existing data 

was digitised from the smaller-scale maps (1: 50 000) that had already been 

generalised from the aerial photography source data. 

• There are new roads and missing roads of the existing data that were possibly 

excluded from the 1: 50 000 maps and that need to be located precisely. 

• There are wrongly located roads and paths in the existing road data 

• Map classification is partly invalid and in need of modifications 

• Administrative classification (see Table 2 on page 30) does not always follow the 

map classification 

• Ancillary attribute information of roads (e.g. surface type, condition, width) gained 

in the field may be useful for some mapping purposes 

 

The mapping process was implemented following the principles introduced in Chapter 6.6. 

The selection of this particular technique for the mapping is considered with more detail in 

Chapter 7.5. The digitisation was extended outside the aerial image subset areas and within 

the boundaries of the Mwatate-Wundanyi image mosaic. Visual inspection was made at a 

scale between 1: 3000 – 1: 5000 on the device screen. Together with the digitisation work, 

roads were classified and attribute information was given to each digitised road segment 

(Figure 38). In addition to the initial map classification, roads were categorised according to 

the administrative classification based on Roads 2000 Coast (s.a) reference map and by their 

surface type. The various classification methods are shown in Table 7. The map classification 

was made with the assistance of the existing road data layer and the original, scanned 

topographic maps as well as the visual analysis. Initial classes of the existing road were 

modified if necessary, and new roads were given a class number based solely on the visual 

interpretation. 
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Figure 38. The attribute information of selected road objects. 
 

Table 7. Three different classification types. 
Map classification Administrative classification Surface classification

(class_map) (class_adm) (type)

All weather road, International trunk road (A) Tarmac
bound surface (1) National trunk road (B) Gravel
All weather road, Primary road (C) Earth
loose surface (2) Secondary road (D)

Dry weather road (3) Minor road (E)
Main track, motorable (4) Unclassified road (U)
Other track or footpath (5)  

 

The next step was to update the attribute information of the existing road data of the outside 

regions of the mosaic, in other words the areas that were not included in the digitisation work 

of this study. The same attribute information types were given to the old road network when 

determined as were set to the digitised roads. 

 

Finally, the data of the existing road data layer from the outside regions of the mosaic was 

appended into the new data layer. In future, it is possible to join more updated attribute 

information into the new data layer or add the road infrastructure of the Ngangao and Chawia 

image mosaics (Lanne 2007) to this dataset. In addition, more attribute information may be 

associated into the data layer, e.g. road width, upcoming or implemented maintenance 

operations, general conditions during the rains, etc.  
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6.8 FIELD SPECTROMETRY 

Field spectrometry is a quantitative, sensitive technique and the results obtained are very 

dependent on environmental characteristics conditions, instrumentation available and 

sampling strategies applied in the field. Therefore, the measurement operations have to be 

designed and conducted with care and standardised procedures. In addition, further analysis of 

the spectra requires systematic, exact inspection techniques to reduce possible error sources 

and to gain reliable results in the analysis. 

6.8.1 FIELD SPECTROMETRY MEASUREMENTS 

A small-scale field spectrometry study was conducted during the second field work period in 

the Taita Hills between 23rd and 29th January 2005. The spectra of different road surfaces 

were acquired in situ with PhD student Barnaby Clark, in conjunction with his work to collect 

calibration site data for the Historical Empirical Line Method (HELM) correction of the 

SPOT imagery (Clark & Pellikka 2005). In total, 20 sets of reflectance measurements, each 

with a sample average of 15, were measured at 14 different sites using an ASD FieldSpec® 

HandHeld UV/VNIR (325-1075 nm, 3.5 nm spectral resolution) spectroradiometer. Spectra 

were collected in sets of one or two for each field target. The device was calibrated to a 

Spectralon® BaSO4 99% white reference reflectance panel before each single set of 

measurements. The spectra were acquired from a height of ~1.0 meter using the bare field 

optic cable, with a field of view of 25° (0.44 m at-nadir ground view at a height of 1.0 m). 

The field site descriptions are presented in Table 8 and the terrestrial photographs in 

Appendix 1.  

 

The next step was to reduce noise by using median values in post-processing. If two sets were 

collected at the same site, average values of the both median value sets were calculated for 

further processing. 

 

There are various methods of applying spectrometry measurements for further analysis. One 

approach is to compare the measured reflectance curves with each other and compile a 

spectral library of the data, which would give information about the spectral characteristics 

and discrimination of the different road surfaces. In addition, it is possible to apply the field 

spectrometry to imaging spectrometry with hyperspectral sensors, which have potential for 

more detailed and sophisticated analysis than conventional multispectral sensors. If there is 

only a limited amount of measurements, it is more practical to analyse the data with existing 
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spectral libraries that usually contain pure laboratory, field or imaging-based spectral samples 

of different urban and natural surfaces with high spectral detail and additional information. 

 

Table 8. Field site descriptions and collected spectrum sets. 
Site 1 Red earth road 2 sets

Site 2 Bright red earth road 2 sets

Site 3 Light grey gravel road 1 set

Site 4 Light concrete road (ford) 1 set

Site 5 Glittering brown/grey earth road 1 set

Site 6 Brownish red earth road 1 set

Site 7 Light grey gravel road 2 sets

Site 8 Old, grey concrete road 2 sets

Site 9 Greyish brown earth road 1 set

Site 10 Reddish brown earth road 2 sets

Site 11 Bright red earth road 1 set

Site 12 Old, light tarmac road 1 set

Site 13 Old, light tarmac road 2 sets

Site 14 New, dark tarmac road 1 set  
 

In this study, the results of the field spectra were compared with a few existing spectral 

libraries and literature to obtain wide-ranging information about the roads’ spectral 

characteristics. The influence of the composition and the condition and the aging of paving 

were considered in the investigation. The results of the field spectrometry are presented in 

Chapter 7.6, and the comparison with the other research results is considered in Chapter 9. 

6.8.2 SYNTHESISING MEASUREMENTS WITH THE SPOT IMAGE 

The spectrometer measurements were further processed to synthesise the SPOT image data 

which, at least in theory, would make possible the concurrent analysis of the spectrometer 

derived reflectance values and the atmospherically corrected SPOT response for each spectral 

band. In this study, however, it was not a principal task since the spatial resolution of the 

SPOT image is not sufficiently high for getting pure reflectance values of the road surface 

pixels. Furthermore, it would be more practical to use field spectrometry with hyperspectral 

image data with a higher spectral resolution as well. 

 

Due to the multispectral, broad-band characteristics of the SPOT sensor, it was necessary to 

process the spectrometer derived reflectance spectra to match with each spectral band of the 

sensor separately. The recorded, complete 325 – 1075 nm spectra had to be synthesised to the 

lower spectral resolution (of the SPOT data) and therefore, spectra were resampled into the 
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SPOT spectral configuration (4 channels with 5 nm FWHM). Total integrated spectral 

response values were calculated for Band 1 (green), Band 2 (Red) and Band 3 (NIR) based on 

the specific spectral sensitivities of each band (obtained from the SPOT website). Band 4 was 

not calibrated, since the mid infrared (MIR) wavelength (1580 - 1750 nm) is outside the 

wavelength domain of the FieldSpec® HandHeld UV/VNIR spectroradiometer. The 

synthesised SPOT reflectance response values were calculated for each of the 14 field 

spectrometry site measurements. 

 

The next step of the spectrometry analysis was to compare the synthesised SPOT reflectance 

response of the spectrometry derived data with the actual reflectance values of the SPOT 

image pixels. The SPOT 2003 image was atmospherically corrected applying the Historical 

Empirical Line Method (HELM) by Clark (Clark & Pellikka 2005). The corresponding pixels 

of the field spectrometry sites were traced on the SPOT image on the basis of visual 

interpretation and the GPS coordinates recorded in the field. The per-band pixel reflectance 

values of the roads were determined; in most cases it was practical to calculate the mean value 

of two pixels locating in the position or in the direct vicinity of the road site. 

 

The final step was to compare roads’ reflectance values with their various surroundings. 

Similarly with the previous step of the procedure, a number of pixels representing 

surroundings of the road sites were defined on the SPOT image. These pixels represent 

various surrounding environments of the roads which may be considered at least somehow in 

Appendix 1. The adjacent pixels were selected so that they were both side of the earlier 

determined road pixel(s) in each field site location. The per-band reflectance values were then 

defined for the surrounding pixels and finally, the road pixels and surrounding pixels were 

considered in a common context. 
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7 RESULTS 

In this chapter, the results of the pre-processing, the visual and digital analyses, the road 

mapping and the field spectrometry are introduced for each step of the procedure. In addition, 

the results and the methodologies beyond the results are considered in Chapter 8 from the 

viewpoint of accuracy assessment. 

 

Object-oriented and pixel-based classification results are presented as raster mask images of 

simplified visualisations with three informative classes. In Appendices 2, 3 and 4 the digital 

classification outputs are presented with two classes: tarmac road and earth road that were the 

classes of interest for the purposes of this study. 

7.1 PRE-PROCESSING AND MOSAICKING 

In this context, mosaicking results of the airborne digital camera data are considered but not 

the SPOT satellite imagery since they were not pre-processed by the author. The original 

resampled image mosaics derived from the EnsoMOSAIC mosaicking are presented in Figure 

39.  

 

 

Figure 39. The resampled image mosaics: without the BRDF correction (left) and with the 
BRDF correction (right). 
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Given the fact that nearly 600 images of changing illumination conditions over the Taita Hills 

region of varying topography were applied to the mosaicking, the final output mosaic is 

considered to be of appropriate quality. The output could have possibly been of better quality 

if the mosaicking process had been implemented repetitively by creating several sub-mosaics 

of smaller areas and then combining them together. However, it was seen more practical to 

generate an unbroken, larger extent image mosaic covering the whole area from Mwatate to 

Wundanyi. 

 

There are few clouds and shadows of the clouds in the mosaic that decrease the quality of the 

output image and generally negatively influence digital classification of the remote sensing 

data. In addition, visual analysis becomes more difficult if there exists clouds and shadows in 

the imagery. Both disturbing factors are concentrated mainly in the north-east corner of the 

image mosaic around the Wundanyi area. The influence of the implemented radiometric and 

geometric corrections is evaluated in Chapter 8.1. 

 

The original BRDF corrected image mosaic was further subset to fix the irregular frames of 

the mosaic. Furthermore, three smaller subsets were produced for the digital classifications 

and visual analysis. The final mosaic subsets are shown in Figure 40. 

 

 

Figure 40. The Mwatate – Wundanyi mosaic subset (left) and the three small subsets of 
Mwatate (bottom), Dembwa (middle) and Wundanyi (top). 



 

  95 

7.2 VISUAL INTERPRETATION 

The results of the subset visual interpretations are presented with the source image data in 

Figure 41. Although the inspection of the SPOT image was extended beyond the subset areas 

to the highlands and the southward lowlands of the Taita Hills, only the subset areas are 

shown in this context. The analysis was easier to perform as the road network was considered 

at the scale of the entire SPOT image and not only at the scale of the subset areas. 

 

The applied summary filter slightly sharpened up the edges between roads and their adjacent 

land use but generally, image enhancement operations did not make any significant 

improvements to the appearance of the roads on the SPOT image. The edge detection filter - 

that was expected to be the one in question to emphasise road edges - did not operate properly 

and it was thus abandoned from the enhancing of the imagery.  

 

 

Figure 41. The visual interpretation of the SPOT image (left) and the mosaic subsets (right) of 
Wundanyi (top), Dembwa (middle) and Mwatate (bottom). 
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The SPOT image analysis was performed at a very general level and the results were not very 

accurate. It was possible to detect and delineate roads very generally, and only main roads or 

parts of them were identified at the subset areas while minor roads and paths were not 

identified at all. The interpretation results varied according to road characteristics and 

environment adjacent to roads. At the scale of the whole SPOT image, several trunk roads and 

secondary roads were identified properly in the lowland areas. Furthermore, even narrower 

roads and tracks were visible in these areas. However, roads located in the highlands were not 

primarily distinguishable, not even the wider main roads. 

 

On the contrary, nearly all roads were detected accurately on the digital image mosaic subsets 

and digitised along their centre line. Main roads were detected most accurately, and moreover, 

minor roads and paths were identified on the imagery. In addition, it was possible to identify 

the construction materials of roads, whether a road had a tarmac or earth surface. There were 

slightly differences between the analyses results of the different subsets due to the different 

road and adjacent land use characteristics and the disturbance of shadows and clouds. 

 

7.3 PIXEL-BASED ROAD EXTRACTION 

The pixel-based supervised classification results are presented so that they are first considered 

generally and then class-specifically, especially in terms of the road classes. In addition, the 

results are assessed in Chapter 8 with error matrices that give more exact information about 

the overall and class-specific accuracies of the various classification techniques. The pixel-

based classification results are also presented in Appendices 2, 3 and 4 with the segmentation-

based classification results. 

 

In this context, it is not meaningful to describe the classification results with area variables. 

The visual analysis was implemented by digitising roads as polyline objects – not as polygons 

– and thus, it would not make sense to compare classification area variables with the line 

features that have no area attribute information. Therefore, quantitative area-based 

examination and comparison is excluded from the study, and the examination is done by 

comparing the classification results with the original aerial image subsets, the “ground truth”. 

Alternatively, length values were calculated for the generated vector skeletons (see Chapter 

8.4). 
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Generally speaking, all three pixel-based classifications are characterised by over-

emphasising of both the road classes. There are erroneous pixels classified as either tarmac or 

earth road class, although they actually belong in the non-road class in most cases. When 

visually comparing the classifications, it can be seen that only the tarmac road class of 

Dembwa is classified fairly well; all the other road classes of each classification contain 

numerous misclassified pixels. In other words, commission error - which defines 

misclassification of other pixels to that particular inappropriate class – is prevalent in the road 

classes of these classifications. Respectively, the omission error – which tells omitted pixels 

from the correct category - is common predominantly in the non-road class, since these pixels 

were classified as both road classes. The omission – commission aspect is considered in 

Chapter 8.3 in context of the accuracy assessment error matrices. 

 

The supervised maximum likelihood classification result for Mwatate is presented in Figure 

42. Most tarmac road pixels are classified to their appropriate category, and major earth roads 

likewise, but substantial errors of commission in non-road pixels occurred in these categories 

as well. In particular, northwest and eastern parts of the subset region have broad areas of 

tarmac pixels at inappropriate locations. Wide areas were misclassified into the earth road 

class in the southern and southwest part of the image subset. 

 

In Dembwa (Figure 43), tarmac road was classified well and only few areas were mixed into 

this category. Wider earth roads were also classified quite successfully but the earth road class 

contains plenty of misclassified non-road pixels as well. 

 

The Wundanyi classification output (Figure 44) has a significant amount of misclassified 

tarmac class pixels, especially in the vicinity of Wundanyi centre. Similarly, there are many 

pixels inappropriately classified as earth road. The major tarmac road was classified mostly 

correctly. 

 

Since the classification results were not promising at all, the pixel-based classification outputs 

were excluded from the further analysis. However, the raster image data was converted into 

polygon data but the vector output was of poor quality as well. Therefore, it was not 

attempted to modify the polygon data such that it would be appropriate for the primary road 

infrastructure mapping of the study area. In this context, the converted polygon data are not 

shown due to their very poor quality and uselessness. 

 



 

  98 

 

Figure 42. The pixel-based classification of Mwatate. 
 

 

Figure 43. The pixel-based classification of Dembwa. 
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Figure 44. The pixel-based classification of Wundanyi. 
 

7.4 OBJECT-ORIENTED ROAD EXTRACTION 

The object-oriented classification results and the following vectorisation results are presented 

in this chapter. The segmentation-based raster masks are also shown in Appendices 2, 3 and 4 

with the pixel-based classification results. 

7.4.1 CLASSIFICATIONS 

Quite similarly with the pixel-based classifications, the Level 1 classifications generally over-

estimate both road classes. In particular, Mwatate and Wundanyi classifications have plenty 

of commission errors in the road classes. Respectively, considerably less misclassifications 

occur in these categories in the Level 2 classifications.  

 

Figure 45 shows the classification results for Mwatate. In the Level 1 classification, the 

tarmac road class encompasses most tarmac roads but also other areas, especially in the 

western parts of the region and in the surroundings of Mwatate. Most main earth roads are in 

their appropriate category, but there are also many misclassified objects in this class, 

particularly in the southern parts of the image. In the Level 2 classification, most tarmac roads 
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are classified properly and there are fewer over-classified features in this category. Earth road 

class has less non-road features in its class, although many minor roads, tracks and paths were 

misclassified as the non-road class. 

 

The classification result for Dembwa is presented in Figure 46. In the Level 1 classification, 

tarmac was classified properly, although a few other features were misclassified as this 

category too. Earth roads were classified either as their appropriate category or as the non-

road class. At Level 2, the classification of tarmac and earth roads was more successful and 

fewer segments were misclassified into the non-road class. 

 

Figure 47 shows the results of the Wundanyi subset classifications. At Level 1, the tarmac 

road class encompasses appropriate tarmac roads but also several other objects, especially 

around the Wundanyi population centre and in the south-east rock area. Earth roads were 

either classified properly or misclassified as non-roads. In the Level 2 classification, several 

non-road segments were classified as tarmac, but considerably less of them ended up in the 

earth road class. 
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Figure 45. The object-oriented classification of Mwatate applying Standard NN (Level 1, top), 
and applying membership functions (Level 2, bottom). 
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Figure 46. The object-oriented classification of Dembwa applying Standard NN (Level 1, 
top), and applying membership functions (Level 2, bottom). 
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Figure 47. The object-oriented classification of Wundanyi applying Standard NN (Level 1, 
top), and applying membership functions (Level 2, bottom). 
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7.4.2 AUTOMATIC VECTORISATION 

The skeleton outputs of the eCognition’s automatic vectorisation are visualised with the 

visually interpreted, manually digitised roads. Here, both layers are visualised by their surface 

type, since the exported skeletons have this type of classification directly based one the 

eCognition’s classification results. Furthermore, the main aim of the vectorisation was to 

study the possibilities of the vectorisation procedure to generally convert raster classification 

results to vector outputs and different road types to their proper categories. 

 

The skeleton layers presented below are based on the Level 2 object-oriented classification 

results. In addition, skeletons were created from the Level 1 classifications, but the results 

were notably worse than Level 2 outputs. In Level 1, there were plenty of redundant, 

fragmental skeletons all over the classified areas, only a minority of actual roads were covered 

by proper skeletons and generally the skeletons were of extremely poor quality. Therefore, 

these skeletons were discarded from further consideration and they are not presented here. 

 

Figure 48 presents manually digitised roads versus automatically generated skeletons 

representing the roads of the Mwatate area. In places, the skeletons follow strictly the 

digitised main roads but there are many skeletons missing in particular on the minor roads and 

tracks, and there are also unnecessary skeletons in the area. 

 

 

Figure 48. The skeletons and the digitised roads of the Mwatate subset. 
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In Dembwa (Figure 49), nearly the whole length of the tarmac road is covered with skeletons. 

A few main earth roads have also continuous skeletons overlaid but many other earth roads 

have no skeletons at all. 

 

 

Figure 49. The skeletons and the digitised roads of the Dembwa subset. 
 

Figure 50 shows skeletons in the Wundanyi area. There are only few continuous skeletons in 

the area; most of the roads are lacking skeletons or just have short pieces of them. The tarmac 

road from south to Wundanyi is the only road that is fairly well covered by the skeletons. 

 

In addition, the vectorisation results are considered in Chapter 8.4, in which the accuracy of 

the procedure is assessed through calculating different length variables for the generated 

skeletons. 
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Figure 50. The skeletons and the digitised roads of the Wundanyi subset. 
 

7.5 GENERATING AN UP-TO-DATE ROAD INFRASTRUCTURE DATA LAYER 

The results of the road mapping and updating are introduced below. The mapping was 

concentrated mainly in the aerial image mosaic area, but some results will also be shown at a 

broader extent in Appendices 8 and 9, although the outside regions of the image mosaic were 

not mapped otherwise than adding the attribute information about the administering and 

surface type classifications to the existing road network. 

 

The initial purpose of this study was to implement object-oriented classification and 

vectorisation for the road infrastructure mapping of the Taita Hills region. Beforehand, it was 

assumed that automated road vectorisation results of the eCognition software could be 

improved by manual editing and completion of the skeletons and to generate a practicable 

vector layer for the updating of the Taita Hills geodatabase. Since the results of the 

segmentation-based classification and vectorisation were not satisfactory at all, the original 



 

  107 

concept was abandoned. It would have been an unreasonable and time-consuming task to 

generate a proper road layer based on the skeletons that were not of appropriate quality. There 

was not only an absence of these skeletons in most classified places, but there were also 

plenty of redundant, fragmental skeletons in the wrong locations. Even the skeletons in the 

road locations may be erroneous and inappropriate for further use if they are not located 

precisely at roads’ centrelines as they should be. Hence, the mapping and updating of the 

Taita Hills road infrastructure was conducted on the basis of visual interpretation and manual 

digitisation. 

 

The road infrastructure of the Taita Hills mosaic area by the map classification is represented 

at two different dates, in 1991 and in 2004 (Figure 51 and Appendix 5). The 1991 dataset was 

created by Broberg & Keskinen (2004). It can be noticed that there are obvious differences in 

the extent of the road networks between the two dates. In particular, there are plenty more 

tracks and footpaths and the road network is denser in the 2004 map than in the 1991 map. 

Regardless of reasons, which are discussed in Chapter 9, evident changes are seen in many 

areas, such as in the surroundings of Dembwa and Wundanyi between the different years. In 

places, there are fewer roads generally whereas some parts of the mosaic region - especially 

northern and middle ones - are more densely covered by roads in the 2004 output. 

 

 

Figure 51. The road infrastructure of the Taita Hills by the topographic map classification in 
1991 (left) and 2004 (right) 
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The road infrastructure by the administering classification is presented in Figure 52 and in 

Appendix 6. The administering classification is based on the Roads 2000 Coast (s.a.) 

reference map data. Most of the roads in the Taita Hills are unclassified roads, whereas a few 

minor roads and other roads of “higher” categories are located in the region.  

 

 

Figure 52. The road infrastructure of the Taita Hills by the administering classification in 
2004. 
 

The road infrastructure of the Taita Hills classified by surface type is shown in Figure 53 and 

in Appendix 7. Earth road is clearly the most widespread road type in the region, whereas 

tarmac and gravel are more uncommon, rarely used surface materials in road construction. 

However, this surface classification is very generalised in terms of the earth road class which 

contains all colour tones and composition of red, reddish, brownish-red, brown etc. earth 

roads. 
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Appendix 8 shows the updated road infrastructure of the mosaic area combined with the 

vector data of the surrounding regions generated from the Kenya 1:50 000 Topographic Maps 

(Broberg & Keskinen 2004). The SPOT image is visualised in the background. It should be 

noticed that data of the mosaic area and the surroundings were created using data of different 

degree of generalisation and varying accuracy. The map shows that the road network is denser 

within the mosaic area and in particular, there is more extensive coverage of tracks and 

footpaths in the highland area than in the surrounding plains. In Appendix 9, the road 

infrastructure of the Taita Hills and the surrounding plains is visualised by the administering 

classification. At the scale of the whole region, minor roads are concentrated within the 

mosaic area, and several minor roads lead to or pass through the core area of the Taita Hills. 

Generally, there are secondary and minor roads all around the region but with a rather 

scattered distributed and less to the south side of the Voi – Taveta international trunk road. 

The whole region is bounded by the two international trunk roads. 

 

 

Figure 53. The road infrastructure of the Taita Hills by the surface type in 2004. 
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7.6 FIELD SPECTROMETRY 

7.6.1 FIELD SPECTROMETRY MEASUREMENTS 

The field spectrometry reflectance values of the different road surfaces are presented in 

Figures 54 and 55. Note that all reflectance values for the Taita Hills road surfaces are less 

than 70 %. Over the measured spectrum, concrete and gravel roads have the highest 

reflectance while tarmac surfaces have the lowest values. Generally speaking, variation 

between the reflectance values of various road surfaces increases towards the longer 

wavelength regions (NIR). Only tarmac roads have level spectral responses across the 

measured spectra while others show significant variation across their spectral range. All road 

surfaces have reflectance with an increasing signal towards the longer wavelength regions 

(NIR), however in the case of the tarmac roads the increase is minimal. Furthermore, no 

significant absorption troughs can be observed on any road surfaces and all roads experience 

the sharpest increase of their reflectance between 500 and 600 nm (~VIS green). While earth 

roads have another slightly sharp rise from 900 nm upwards, the increase is less in case of 

other roads. 

 

The greatest within-class variation occurs between the different concrete sites: while the light 

concrete surface (Site 4) has reflectance between 15 to 60 % across the measured spectrum, 

the grey concrete (Site 8) has considerably lower reflectance between 8 and 28 %. Earth road 

surfaces show moderate separation particularly within the NIR region where the reflectance 

values are between 20 and 40 %. Tarmac surfaces have the lowest within-class variability: 

dark colour tarmac (Site 14) has the lowest reflectance of all roads measured, but it is only 

slightly lower than the spectra of lighter dark colour tarmac roads (Sites 12 and 13).  

 

It should be noticed that in this context, the term “dark (colour)” is used to describe the 

tarmac road of new, good condition tarmac, whereas the term “lighter dark colour” defines the 

deteriorated road of poorer surface condition and older tarmac. The age, condition and 

composition aspects are considered with more detail in Chapter 9. 
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Figure 54. Spectral plots of the earth road surfaces. 
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Figure 55. Spectral plots of  the tarmac, concrete and gravel road surfaces. 
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7.6.2 SYNTHESISING MEASUREMENTS WITH THE SPOT DATA 

The results of the SPOT 2003 image pixel reflectance values and synthesised SPOT 

reflectance response comparison are shown for each band individually in Figures 56, 57 and 

58, and in the measured values in detail Appendix 10 and 11. All compared reflectance values 

are less than 70 %. Generally speaking, there are not any evident trends that one dataset 

would regularly give higher or lower reflectance values than the other. On the contrary, the 

corresponding points seem to locate at the reflectance scale quite randomly. When comparing 

all values of all three bands, 59 % of the corresponding values are located within the 10 % 

units of each other. When comparing the results band-specifically, it can be summarised that 

in Band 1 eight values out of 14 (57 %) were within 5 % reflectance units of each other, four 

(29 %) in Band 2, and five (36 %) in Band 3. The greatest variation between the pixel 

reflectance values and synthesised SPOT reflectance values occurs in Sites 3 (gravel) and 4 

(concrete) in every band.  
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Figure 56. Comparison of the SPOT pixel reflectance values and the synthesised SPOT 
reflectance response for Band 1 (G). 
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Figure 57. Comparison of the SPOT pixel reflectance values and the synthesised SPOT 
reflectance response for Band 2 (R). 
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Figure 58. Comparison of the SPOT pixel reflectance values and the synthesised SPOT 
reflectance response for Band 3 (NIR). 
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The results of the SPOT 2003 road pixels and surrounding pixels comparison are presented 

for each band individually in Figures 59, 60 and 61, and the measured values in detail in 

Appendix 12 and 13. All compared reflectance values are less than 45 %. The surrounding 

pixels have reflectance values above and below the roads’ values, mostly within 5 % units to 

both directions from the road reflectance values. Hence, there is very little variation between 

the reflectance values of the road sites and their surroundings. Furthermore, there are not any 

obvious differences between the different road surfaces. It should be noticed that the tarmac 

roads have similar reflectance values with their surroundings as well – this is a fact that 

emphasises the meaning of the spatial resolution characteristics and the mixed pixel problem 

occurred frequently on the SPOT image. 
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Figure 59. Comparison of the SPOT road and surroundings reflectance values, Band 1 (G). 
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Figure 60. Comparison of the SPOT road and surroundings reflectance values, Band 2 (R). 
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Figure 61. Comparison of the SPOT road and surroundings reflectance values, Band 3 (NIR). 
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8 ACCURACY ASSESSMENT 

In this chapter, the quality and the reliability of the results and methods are evaluated. 

Accuracy is assessed for each main step of the pre-processing and the analysis procedure. 

Both quantitative and qualitative evaluation is implemented. 

8.1 PRE-PROCESSING AND MOSAICKING 

In this context, the accuracy of the BRDF correction is assessed briefly, but the light fall-off 

correction is not evaluated. Geometric corrections are considered at each step of the 

procedure.  

8.1.1 RADIOMETRIC CORRECTIONS 

In general, colour variations appeared in the imagery due to radiometric errors and different 

illumination conditions during the flight (Thurston 2003). The applied radiometric and 

geometric corrections reduced but not totally remove the volume of the errors encountered in 

the imagery. Radiometric errors are seen as vertical striping between adjacent flight lines on 

the image mosaic. The stripes are not precisely vertical but slightly twisting due to the varying 

orientation of the flight lines. The applied BRDF correction parameters reduced the intensity 

of the BRDF effect on the mosaic but the correction did not succeed in removing the 

brightness variations completely. 

 

The optimum approach would have been to define correction factors for each individual 

image of the mosaic and for every band of the images. In addition, different quantification 

factors are needed for different land cover types to avoid over-correction or under-correction 

(Mikkola & Pellikka 2002). In this context, the correction model was only applied to the 

different bands of the entire image mosaic but not to different land cover types to avoid an 

unreasonable amount of pre-processing work. It should also be noted that the applied 

correction parameters were generalised values for the circumstances of Kenya, and thus they 

are not specified for this particular area, which may have had an influence on the final result. 

8.1.2 GEOMETRIC CORRECTIONS 

The geometric accuracy of the mosaics depends on the aerial photography, the original “raw” 

images and the corrections applied to the mosaicking procedure. The changes of the aircraft 

in-flight such as flight direction, speed and altitude may cause differing flight line orientation 

and varying overlap of the images (Thurston 2003). 
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In this study, the geometric corrections were implemented in the EnsoMOSAIC 

orthorectification process by the iterative Bundle Block Adjustment (BBA). The standard 

mean error of unit weight is a function of all the residuals and all the weights, and it is used to 

estimate the overall accuracy of the image rectification (StoraEnso 2003: 37-39). The 

adjustment error, the root mean square error (RMSE) of the final block for the creation of the 

image mosaic was 1.11 and maximum residual 2.0. In general, an overall adjustment error 

close to two pixels is a good and approximately one pixel is an excellent result of the BBA 

(StoraEnso 2003: 46). Thus, the mosaic is considered to be at least of good quality. 

 

The optional ground control points (GCP) were not used to improve the geometric accuracy 

of the image mosaic. GCPs are not a necessity for the mosaicking procedure if accurate GPS 

data is registered during the flight (StoraEnso 2003: 3). The accuracy of the air-GPS was 

estimated to approximately 5 meters (Chapter 6.3.3) which was considered to be adequate for 

solely GPS data-based mosaic generation. 

 

The overall geometric accuracy of the image mosaic was evaluated with the road GPS points 

collected in the field, and against the existing vector road data layer. The latter was only a 

very approximate evaluation since the digitised roads had been generalised from the once 

already generalised Kenya 1:50 000 Topographic Map information, and thus, they only fit 

partially when overlaid with the image mosaic. Generally speaking, vector roads fit regularly 

over the aerial image mosaic. When comparing with the GPS points, the geometric accuracy 

of the mosaic is considered to be good. 

 

With a closer look at the image mosaic, it may be noticed that there are few visible seams 

between the individual images of the image mosaic and, consequently, discontinuities 

between the features of adjacent images, in particular roads and buildings. In Figure 62 minor 

discontinuities can be seen most clearly within the yellow boundaries at the locations of the 

artefacts. The geometric distortions stem from various reasons. Firstly, the changes of the 

aircraft in-flight cause distortions to objects captured in two adjacent flight lines due to the 

differences in photography, flight direction, speed etc. (Thurston 2003). When these objects 

are mosaicked using the “raw” images of varying ground pixel size and orientation, the 

outcome may be a visible seam in the image mosaic. In general, seams origin from the 

inconsistencies and inaccuracies of the DEM applied to the orthorectification and from the -

height differences of the terrain (Hurskainen 2005: 97). The tie points located on top of 



 

  118 

buildings instead of the ground may cause distortions to the appearance of buildings due to 

the inaccurateness of the generated DEM in these particular spots. The quality of the 

generated DEM is discussed later in this section. In addition, distortions of buildings stem 

from the relief displacement of photogrammetry. The magnitude of relief displacement 

depends on the flying altitude, the distance from the principal point to the feature, and the 

object height (Lillesand & Kiefer 2000: 127). Hence, the effect causes the top of a vertical 

feature to lie farther from the principal point of the image than its base resulting in a leaned 

appearance of the object (ibid.: 148).  

 

 

Figure 62. Geometric errors occurred in the image mosaic. 
 

There is a clearly observable discontinuity error in the very north-west corner of the image 

mosaic where roads and fields are not at consistent locations (Figure 63). The area is located 

at the northernmost end of the flight line 11, at the place of the last individual “raw” image 

utilised for the mosaicking. The error of that image origins from the EnsoMOSAIC 

orthorectification process, since the overlap and sidelap with other images were inadequate 

and there were not sufficiently tie points located on that area of the “raw” image successful 

image rectification. However, this part of the mosaic was excluded from both visual and 

digital analyses. 

 

 

Figure 63. Geometric errors occurred in the image mosaic 
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8.1.3 DEM 

Geometric distortions of the image mosaic stem from the DEM quality and the great height 

variations of the undulating terrain of the Taita Hills. The DEM was computed with the 

136947 tie points based on the elevation values generated for the tie points during the BBA 

(Figure 64). The accuracy of the DEM depends on the number of tie points measured 

(StoraEnso 2003: 42). Respectively, the amount, distribution and accuracy of the tie points 

affect the accuracy of the final mosaic (Sarmento & Sarkeala (2005).  

 

 

Figure 64. Tie point distribution map (left) and DEM derived from the tie point elevation 
values (right). 
 

Table 9. GPS elevation values of 10 road points and DEM values at the corresponding 
locations. 

Road point 1 2 3 4 5 6 7 8 9 10

GPS elevation 866 967 881 1169 1119 1373 1424 1475 1767 1817

DEM value 873 967 886 1171 1111 1374 1439 1484 1788 1816  
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In places, the unequal distribution of the tie points and the misplacement of some points to 

represent object height instead of true terrain elevation may have decreased the quality of the 

DEM. For instance, along the road from Mwatate to Wundanyi and in the surroundings of 

Wundanyi, the tie point distribution is more unequal and sparse than generally in the mosaic 

area. Since the DEM is based on the tie points that are not necessarily lain on the ground but 

on the top of trees and buildings as well, the output may not be the actual digital terrain model 

(DTM). Consequently, this has a distorting effect on the quality of the final output mosaic. In 

addition, the computation of the DEM at one meter resolution due to the software and 

hardware limits may have caused inconsistencies in the mosaic, since the mosaic was 

resampled at a slightly different resolution. The accuracy of the DEM was checked against the 

GPS height coordinate data of the road point data collected in the field. Elevation values of 

the two datasets were rather uniform and within 10 meters in all except two of ten chosen 

locations (Table 9). 

8.2 VISUAL INTERPRETATION 

Unlike in the pixel-based and object-oriented classifications, the accuracy of the visual 

interpretation was not determined with an error matrix but qualitatively in this context. The 

visual analysis of the SPOT satellite image data is only indicative and at a very overall level 

and, hence, it was not seen necessary to evaluate the accuracy of the results. On the contrary, 

the visual interpretation of the high spatial resolution image mosaic is assumed to represent 

the ground truth and to have an accuracy of almost 100 per cent. However, the accuracy is 

estimated to be at a lower level in places. There are obfuscatory objects such as tree canopy, 

clouds and shadows covering roads and, moreover, low contrast between roads and their 

background – particularly in bare ground areas – which made the detection task more difficult 

to conduct.  

 

The accuracy assessment of the visually generated results were not seen practical, since the 

delineation was conducted by digitising roads as line objects, which was a generalised output 

covering basically only the centre lines of the whole extent of the roads. In addition, 

evaluation was seen worthless when conducted by the same person and against the same 

image data from which the original interpretation was made. 

8.3 PIXEL-BASED AND OBJECT-ORIENTED CLASSIFICATIONS 

A digital classification of remotely sensed data is not complete until the reliability of the 

results has been evaluated. Classification results of remotely sensed data are commonly 

assessed against the reference data that is assumed to be true and usually derived from ground 
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truth data and/or visual inspection. It is important to conduct the accuracy assessment using a 

different data set that is applied to the actual classification to avoid the overestimation of the 

classification accuracy. In addition, the correctness - or at least the very high accuracy - of the 

reference data is crucial to build a fair assessment scheme. The most common way to express 

the classification accuracy is in the form of an error matrix which offers both descriptive and 

analytical statistical techniques to inspect the data reliability (Congalton 1991). 

 

Since there was not a sufficient amount of ground truth data to conduct the assessment with 

test points, the classification results were evaluated against the aerial image mosaic. The 

visual inspection of the high spatial resolution image data was assumed to be the most 

appropriate and correct assessment method for this purpose. The visually interpreted road 

layer was used as an additional dataset on the top of the image. Accuracy assessment was 

performed in ERDAS IMAGINE.  

 

A practical accuracy assessment is conducted with a set of randomly selected reference pixels 

that represents each pixel of the classification scheme. In general, a minimum of 50 samples 

for each vegetation or land use class should be collected to construct an appropriate error 

matrix (Congalton 1991). A more extensive sampling is needed if the classification has a large 

number of different categories and/or if categories show great variability (ibid.) In this 

context, 250 reference pixels per class were selected by using equalised random operation 

which determines an equal number of random points for each class (Erdas 2003: 262). Thus, 

the reference pixels were selected applying a 3x3 window size majority rule which set a 

minimum limit for “randomly” select reference pixels according to the class of the 

surrounding pixels within the square window. The accuracy assessment was performed for the 

recoded classification images, since there were only two classes of interest, namely "tarmac 

road" and "earth road", and one subsidiary class "non-road". Hence, all in all 750 reference 

pixels were selected for each classified image and then visually checked against the digital 

image mosaic.  

 

The error matrices were compiled with the reference points. The error or confusion matrix is 

generally used to compute various descriptive statistics of the data: overall and class-specific 

accuracies of the data, and so-called producer’s and user’s accuracies. While producer’s 

accuracy is a measure of omission error and indicates the probability of a reference pixel 

being correctly classified, user’s accuracy is an estimate of commission measure and 

expresses the probability of a classified pixel actually representing that category on the 
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ground and what has really been measured (Congalton 1991). It is important to describe the 

reliability of the data with both methods since the estimates answer completely different 

questions, and since a misclassification error is not only an omission from the correct class 

but also a commission into another category (Story 1986). In addition, Kappa statistics of the 

error matrices were determined. The Kappa coefficient describes “the proportionate reduction 

in error by a classification process compared with the error of a completely random 

classification” (Erdas 2003: 262). The estimator is commonly used to summarise the results of 

an accuracy assessment assignment (Stehman 1996).  

 

The classification error matrices of the classifications are presented in Tables 10, 11 and 12. 

The overall accuracies for the supervised maximum likelihood (ML) classifications vary 

between 50 and 72 per cent, for segmentation-based fuzzy nearest neighbourhood 

classifications between 49 and 75 % (Level 1), and for fuzzy membership classifications 

between 74 and 91 % (Level 2). The best overall accuracy was achieved in the Level 2 

Dembwa classification (91 %), and lowest accuracy in Level 1, Mwatate (49 %). The overall 

accuracies for Level 1 shows only slightly improvements from the ML classifications, except 

in case of Mwatate where the classification accuracy is even worse. On the contrary, the level 

2 classifications have clearly the highest overall accuracies of the classification methods 

applied to the subsets.  

 

In the pixel-based and the Level 1 classifications, user’s accuracies are notably worse than 

producer’s accuracies generally. That is to say, road classes were over-emphasised with 

redundant, misclassified features. Level 2 shows slightly opposite trend: producer’s 

accuracies are slightly higher than user’s accuracies, although the differences between the 

rates are smaller. In general, Level 2 classification reduced the over-classification into the 

road classes. 

 

In Mwatate, the earth road class of each level is over-emphasised with misclassified features 

from other categories, whereas the tarmac road class shows significant improvement on the 

user’s accuracy of the Level 2 classification. In Dembwa, tarmac road is over-estimated in 

Level 1 classification while the ML and Level 2 classifications have less misclassification as 

tarmac road. Earth road was classified most accurately in Level 2. In Wundanyi, the tarmac 

road class has rather low user’s accuracy in every classification, though Level 2 has clearly 

the lowest commission error of tarmac class. Similarly, earth road class is least over-

emphasised in Level 2 classification. 
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It is stated that a minimum of 85 % overall accuracy and 70 % per-class accuracy is required 

to attain reliable results in land cover classifications (Thomlinson et al. 1999). When 

comparing the digital classifications conducted, only one classification (Dembwa, Level 2) 

has overall accuracy better than 85 % (91 %) with per-class accuracies better than 80 %. 

Hence, this classification succeeded well according to these criteria while the others failed. 

Another classification (Wundanyi, Level 2) almost reached these criteria, having an overall 

accuracy of 83.87 % and lowest class-related accuracy 72.54 %. In the both classifications, 

there are many areas that are either misclassified into the road categories or missing from 

these. However, the criterion was developed for the land cover classifications and not 

specifically for the purpose of road extraction. 

 

In general, the accuracy assessment conducted with the error matrix is only indicative and is 

overly optimistic occasionally as well. Therefore, the accuracies derived from the error matrix 

should not be kept as an unconditional truth but only as an indication of how well the classes 

are spectrally separable, how homogenous the training areas are, and how well the 

classification procedure is suited for that particular scene (Lillesand & Kiefer 2000: 570). 

 

It should also be noted that since the accuracy of the segmentation-based classifications was 

assessed in ERDAS IMAGINE, the initial fuzzy classification concept of eCognition software 

was excluded from this stage onwards. Hence, image objects did not have any longer 

memberships in more than one class but they were “forced” to belong into one delimited 

category. However, this was an applicable assessment method for comparing the accuracy of 

the different classifications with each other. 
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Table 10. Classification error matrices of the pixel-based (ML), object-oriented Level 1 (L1) 
and object-oriented Level 2 classifications in Mwatate. 

Classification Reference data Producer's User's
(ML) Tarmac Earth Non-road accuracy accuracy

Tarmac road 85 6 159 98.84% 34.00%
Earth road 1 48 201 78.69% 19.20%
Non-road 0 7 243 40.30% 97.20%
Overall accuracy 50.13% Kappa statistics 0.252

Classification Reference data Producer's User's
(L1) Tarmac Earth Non-road accuracy accuracy

Tarmac road 59 13 178 93.65% 23.60%
Earth road 3 59 188 78.67% 23.60%
Non-road 1 3 246 40.20% 98.40%
Overall accuracy 48.53% Kappa statistics 0.228

Classification Reference data Producer's User's
(L2) Tarmac Earth Non-road accuracy accuracy

Tarmac road 216 4 30 95.15% 86.40%
Earth road 9 95 146 92.23% 38.00%
Non-road 2 4 244 58.10% 97.60%
Overall accuracy 74.00% Kappa statistics 0.61  

 

Table 11. Classification matrices of the pixel-based (ML), object-oriented Level 1 (L1) and 
object-oriented Level 2 classifications in Dembwa. 

Classification Reference data Producer's User's
(ML) Tarmac Earth Non-road accuracy accuracy

Tarmac road 227 4 19 100.00% 90.80%
Earth road 0 65 185 92.86% 26.00%
Non-road 0 1 249 54.97% 99.60%
Overall accuracy 72.13% Kappa statistics 0.582

Classification Reference data Producer's User's
(L1) Tarmac Earth Non-road accuracy accuracy

Tarmac road 166 1 83 98.22% 66.40%
Earth road 3 150 97 94.94% 60.00%
Non-road 0 7 243 57.45% 97.20%
Overall accuracy 74.53% Kappa statistics 0.618

Classification Reference data Producer's User's
(L2) Tarmac Earth Non-road accuracy accuracy

Tarmac road 226 0 24 98.69% 90.40%
Earth road 3 211 36 98.60% 84.40%
Non-road 0 3 247 80.46% 98.80%
Overall accuracy 91.20% Kappa statistics 0.868  
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Table 12. Classification error matrices of the pixel-based (ML), object-oriented Level 1 (L1) 
and object-oriented Level 2 classifications in Wundanyi. 

Classification Reference data Producer's User's
(ML) Tarmac Earth Non-road accuracy accuracy

Tarmac road 83 10 157 92.22% 33.20%
Earth road 7 65 178 84.42% 26.00%
Non-road 0 2 248 42.54% 99.20%
Overall accuracy 52.80% Kappa statistics 0.292

Classification Reference data Producer's User's
(L1) Tarmac Earth Non-road accuracy accuracy

Tarmac road 54 5 189 84.38% 21.60%
Earth road 10 117 123 89.31% 46.80%
Non-road 0 7 243 43.78% 97.20%
Overall accuracy 55.20% Kappa statistics 0.328

Classification Reference data Producer's User's
(L2) Tarmac Earth Non-road accuracy accuracy

Tarmac road 170 14 66 95.51% 68.00%
Earth road 8 216 26 91.14% 86.40%
Non-road 0 7 243 72.54% 97.20%
Overall accuracy 83.87% Kappa statistics 0.758  

 

8.4 AUTOMATIC VECTORISATION 

The accuracy of the skeletons – or automatic vectorisation – can be assessed with various 

methods to describe the success of automated road mapping. The quality of the extracted road 

centreline from classified imagery determines the positional accuracy of the extracted road 

network (Zhang & Couloigner 2006). Three basic quality measures have been commonly used 

to evaluate extracted road networks: completeness, correctness and Root Mean Square Error 

(RMSE) (Wiedermann 2003). In this context, however, the evaluation is performed slightly 

differently.  

 

The skeletons are compared to the reference data set – the manually digitised road layer – 

with the overall accuracy index, also referred as producer’s accuracy. The overall accuracy 

indicates only omission errors but no commission errors. Therefore, the measure of agreement 

(Hodgson et al. 2004), that considers both types of error simultaneously, is applied to the 

evaluation process with a certain buffer scheme developed by the author. Finally, the correctly 

extracted skeletons are compared to the ground truth (digitised roads), which is considered as 

the most explicit measure of the applied three indexes to describe the actual success of the 

road mapping  procedure performed by the automatic vectorisation and the preceding 

segmentation-based classification. 
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The overall accuracy is derived from the equation: 

 

100
 digitised All

skeletons All(%)Accuracy  Overall ×=  

 

, where All skeletons  = Total length of extracted skeletons 

  All digitised   = Total road length of reference data set. 

    

The overall accuracies and the total length of the skeletons and the digitised roads are 

presented in Table 13. The values were derived in ArcGIS by using its Extract and Proximity 

analysis tools. The table shows that each skeleton layer - except one - has the total length of 

skeletons less than the visual layer has, and that the overall accuracy values are substantially 

better for tarmac roads. The exception is the tarmac skeleton layer of Dembwa, in which the 

total length of skeletons exceeds the ground truth. The Dembwa tarmac case clearly indicates 

the problem that occurred in the vectorisation procedure: there may be redundant skeletons 

involved in the road classes. Respectively, other results indicate that some skeletons may be 

missing. Hence, although the total length comparison may indicate general trend of the 

vectorisation, there may be redundant skeletons harming and skewing the actual rates of the 

vectorisation. 

 

Table 13. Accuracy assessment indexes of  the vectorised skeletons. 
Mwatate

All digitised All skeletons Skeletons ( ≤ 5m distance)

length (m) length (m) Overall accuracy (%) length (m) Agreement (%) % of All digitised
tarmac 3105.57 2477.38 79.77 1725.84 44.74 55.57

earth 22669.23 11941.51 52.68 5142.87 17.45 22.69

Dembwa
All digitised All skeletons Skeletons ( ≤ 5m distance)

length (m) length (m) Overall accuracy (%) length (m) Agreement (%) % of All digitised
tarmac 4660.59 5356.67 114.94 4633.57 86.07 99.42

earth 35494.99 16012.54 45.11 11324.39 28.18 31.90

Wundanyi
All digitised All skeletons Skeletons ( ≤ 5m distance)

length (m) length (m) Overall accuracy (%) length (m) Agreement (%) % of All digitised
tarmac 4269.40 4189.19 98.12 2803.77 49.58 65.67

earth 48126.41 11815.47 24.55 9038.28 17.76 18.78  
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Consequently, a slightly different approach was developed to dissect correctly extracted 

skeletons which truly represent roads. Therefore, total length values were calculated for those 

skeletons that are located within a 5 metre distance buffer zone from centrelines of the 

visually digitised roads. In this context, both road classes were handled separately. However, 

this was a rough approximation based on the estimated maximum road width (i.e. 10 metre) in 

these subset areas. Therefore, specific buffer layers were generated from the visually digitised 

roads and the skeletons were then set against the per-class buffers to derive length attribute for 

those skeletons that fulfil the 5m distance criterion. It should be noted that since many of the 

roads, tracks and paths in the subset areas are narrower than 10 metres, the 5m buffer distance 

may be too much to represent the actual road width in many cases. Hence, the buffer estimate 

may skew and increase the measured accuracy rates, as there are skeletons within the buffer 

zone which fulfil the predefined criterion but do not truly represent roads. 

 

The road feature agreement is derived from the equation (Hodgson et al. 2004): 

 

100
) distance) (5m Skeletons ( - digitised All  skeletons All

distance) (5m Skeletons(%)Agreement  Feature Road ×
+

=  

 

, where Skeletons (5m distance) = Total length of skeletons within the 5 m buffer zone. 

  All skeletons = Total length of extracted skeletons 

  All digitised  = Total road length of reference data set. 

 

Table 13 shows that the road feature agreement index rates are substantially lower in every 

road class than in the former analysis. Only tarmac road skeletons seems to be generated well 

(86.07 %) in terms of omission and commission errors. All the other agreements values are 

below 50 % which may be considered as poor results according to this accuracy criterion. The 

earth road classes have in every case agreement value below 20 %. 

 

The last evaluation variable indicates the ratio of the skeletons fulfilling the 5 m criterion to 

the all digitised roads. According to these accuracy rates, tarmac roads were vectorised 

moderately or well (Dembwa 99.42 %), but earth roads very poorly. 

 

On the other hand, this approach does not take into account the fact, that although a skeleton 

would be within the set 5 metre criterion from the digitised road centreline, its quality may be 

erroneous and inappropriate for further use. A skeleton may be overly winding and it may be 
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located elsewhere than at roads’ centreline, even outside the whole road area. The direction 

differences (Wiedermann 2003) were not included to this context either. 

8.5 SPECTRAL SIGNATURE SEPARABILITY BETWEEN ROADS AND 

BACKGROUND 

Various statistical methods are used to evaluate spectral separation between different classes 

and consequently, to define appropriate techniques and optimal bands to minimise 

commission and omission errors in a particular classification procedure (Jensen 1996: 218). 

Transformed divergence is used to measure the statistical distance between the signatures of 

different classes and that distance can be used to determine how distinct the signatures are 

from each other. As a consequence, this utility can be used to determine the best subset of 

spectral bands to apply to the classification process. 

 

In this context, the emphasis was not to choose the most optimal bands for the classification, 

since the imagery was comprised of only three visible light channels (RBG). The transformed 

divergence utility was applied to statistically analyse spectral separability between roads and 

background objects on the airborne digital image mosaic. In total, 22 sample signatures were 

collected from the three subset image areas so that these signatures represented most common 

road types (R) and background surfaces (BG) found in the study sites (Table 14). The 

signatures were created with the ERDAS IMAGINE Region Grow –tool (maximum 150 pixels 

area and less than 10.00 spectral Euclidean distance). Statistical distance between the 

signatures was computed with all three bands of visible light channels applying the 

transformed divergence formula (Jensen 1996: 220). 

 

Table 14. Spectral signature test sites. 
R1 Tarmac road, very dark BG11 Red (reddish brown) roof

R2 Tarmac road, dark BG12 Brown roof

R3 Tarmac road, light BG13 Grey roof

R4 Tarmac road, old BG14 Light grey roof

R5 Tarmac road with red sand BG15 White roof

R6 Gravel road, light (red) BG16 Rock

R7 Earth road, reddish BG17 Bare ground, light brown soil

R8 Earth road, red BG18 Bare ground/open field, brown soil

R9 Earth road, light brown BG19 Bare ground/open field, red soil

R10 Earth road, brown BG20 Grass/vegetated field

BG21 Bush

BG22 Tree  
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In general, transformed divergence values are set between 0 and 2000, so that values of 2000 

represent excellent between-class separation, above 1900 stand for good separation and values 

below 1700 for poor separation (Jensen 1996: 225). The results of the signature separability of 

different road types and various background objects using transformed divergence are shown 

in Table 15. The clearly lowest values are marked as bold font and orange colour. 

 

Table 15. Transformed divergence with RGB bands between roads and background objects. 
Sig BG11 BG12 BG13 BG14 BG15 BG16 BG17 BG18 BG19 BG20 BG21 BG22
R1 2000 1954 1997 2000 2000 2000 2000 2000 2000 2000 2000 2000
R2 2000 2000 1337 1996 2000 1931 2000 2000 2000 2000 2000 2000
R3 2000 2000 2000 1718 2000 1966 2000 2000 2000 2000 2000 2000
R4 2000 2000 2000 2000 2000 2000 1982 2000 2000 2000 2000 2000
R5 1984 1994 2000 2000 2000 2000 2000 1891 2000 2000 2000 2000
R6 2000 2000 2000 2000 2000 2000 1995 2000 2000 2000 2000 2000
R7 1968 2000 2000 2000 2000 2000 2000 1991 1999 2000 2000 2000
R8 1933 2000 2000 2000 2000 2000 2000 2000 1498 2000 2000 2000
R9 2000 2000 2000 2000 2000 2000 2000 1961 2000 2000 2000 2000
R10 2000 2000 2000 2000 2000 2000 2000 1992 2000 2000 2000 2000  

 

The table suggest that a few background classes are poorly separable from the roads due to 

the short statistical spectral distance between them, in other words their similar spectral 

characteristics. The clearly poorest separability is in two cases: between dark tarmac road 

(R2) and grey roof (BG13), and between red earth road (R8) and bare ground area (BG19). 

This is undoubtedly true, since grey roofs and tarmac roads were mixed in the classifications, 

especially in Mwatate and Wundanyi centre areas. In addition, the lowest error matrix 

accuracies were derived from the Mwatate subset classifications, and the very same area is 

generally dominated by the red latosoil type that is found widely on the fields, bare grounds 

areas and roads of this lowland area. The third poorest return is between light tarmac road 

(R3) and light grey roof (BG14). Indeed, a number of light grey roofs – that are common in 

the Taita Hills region – and light tarmac roads were problematic in the classification process, 

especially in the pixel-based and Level 1 object-oriented classifications. 

 

The results of the transformed divergence are overly optimistic in comparison with the 

classification results and the error matrices, since there is only two returns below 1700 and all 

in all, four below 1900 suggesting that the classes have excellent between-class separation in 

most cases. For instance, according to the transformed divergence results the Rock (BG16) 

background would have at least a good separation from all tarmac road surfaces (R1-R5), 

although the former was classified as tarmac road in the digital classifications, particularly in 
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certain areas of Wundanyi and Dembwa. Under these circumstances, the table only shows an 

indication based on one spectral signature per object class solely. 

8.6 GENERATING AN UP-TO-DATE ROAD INFRASTRUCTURE DATA LAYER 

The accuracy of the visually interpreted, digitised data is assumed to be very accurate, since 

the aerial image mosaic has high spatial resolution and most roads and even minor tracks and 

paths were clearly detectable. At the same time, a few clouds, forest canopy on the top of 

some roads and low contrast between roads and the background made the analysis more 

difficult in certain places. Generalisation was made during the digitisation and especially 

when defining the smallest roads, tracks and paths. Hence, all tracks and paths do not follow 

strictly their centre lines, but more or less their course anyway. 

 

A proper class for a road was determined on the basis of the original map information. The 

map classification may be partly outdated and moreover, road maintenance activities may 

have upgraded a few roads to a superior class. Therefore, visual inspection was applied to the 

classification as well - that is a slightly subjective method sometimes. In addition, conditions 

of many roads are dependent on seasons and they may change substantially between rain and 

dry seasons. Thus, it was sometimes difficult to define the appropriate categories for the roads 

of fluctuating conditions. 

8.7 FIELD SPECTROMETRY 

Due to the quantitative, sensitive nature of the field spectrometry technique, there are different 

sources of errors that influence the accuracy of the measurements conducted in the field. In 

addition, the accuracy of the analysis may vary according to what type of reference data 

measurements are compared with: spectral libraries, multispectral or hyperspectral data. The 

accuracy of the field spectrometry was not assessed quantitatively in this context but 

considered in terms of possible sources of errors and general success. In addition, the 

accuracy is discussed with the existing spectral libraries and other literature in Chapter 9. 

8.7.1 FIELD MEASUREMENTS 

Collection of field spectra requires particular attention be paid to the characteristics of natural 

illumination. Varying lighting conditions, different geometry of the sun in relation to target, 

cloud cover and shadows affect the process and result in errors in the resultant spectra. 

Parameters such as solar elevation angle and atmospheric conditions influence the intensity of 

direct solar illumination, whereas objects and shadows in the surroundings obscure diffuse 

illumination (Curtiss & Goetz 1994). Moreover, other atmospheric conditions such as 
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humidity in terms of the absorbing effect of water vapour, wind and temperature may change 

the spectra characteristics. 

 

In addition to variable illumination and atmospheric conditions, there are other factors 

affecting the accuracy of the resultant spectra measured in the field. The angle and height at 

which the fore-optics are held in relation to the target surface as well as the target materials 

(e.g. surface temperature) have effects on the measurement procedure. 

 

In this study, the field spectra were collected during six days at different times of days and 

from a wide variety of solar angles and positions. Mainly, the field spectrometry spectra were 

collected under the illumination conditions of clear, cloudless sky, without shadows from 

topography or other disturbing objects and from a constant height of approximately one 

meter. In addition, the device was calibrated at regular intervals, before each single set of 

measurement. Therefore, the general measurement conditions were considered to be rather 

good, although the measurements were done at different times of days. The accuracy of the 

measurements could have possibly been improved in the performance of half-day long 

measurements, which was not possible within the time limits of the field work period. 

8.7.2 SYNTHESISING MEASUREMENTS WITH THE SPOT DATA 

The comparison of the field spectra and remote sensing (RS) imagery is influenced by 

different principal factors: the accuracy of the field spectrometry described above, and the 

absolute radiometric calibration accuracy of the RS imagery. In addition, the general spectral 

and spatial resolution characteristics of the RS data affect the analysis results and accuracy. 

The HELM corrected SPOT data is expected to have  reflectance accuracy of better than 2 % 

for all bands retrieved with an average RMSE (Clark & Pellikka 2005). 

 

It should be noted that only 14 site measurements were analysed with corresponding image 

pixel reflectance values. Indeed, this is not an extensive analysis but it gives an indication of 

the feasibility of this methodology to analyse field spectra with RS imagery. 

 

The timing of conducting field spectrometry is important as well when field spectra are used 

for further analysis with other sources of data, e.g. hyperspectral or multispectral data. 

Therefore, field spectra should be retrieved simultaneously with image acquisition, since the 

variability between the time the reference is obtained and the field targets measured may be a 

source of errors and result in inconsistencies between the datasets. In this study, the timing 
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between the field spectra and SPOT image acquisition was nearly one and a half years, since 

the image data originated from October 15th 2003, and the field spectra from the end of 

January 2005. However, this is a secondary matter in case of road surfaces which should be 

rather spectrally stable over this time span. On the other hand, certain road maintenance 

operations may change reflectance characteristics of roads. For instance, gravelling or 

covering the old surface with new sand of different composition may influence even 

substantially to the reflectance values of roads. 

 

Due to the 20 metre spatial resolution of the SPOT image, the pixel analysis is not assumed to 

be accurate. The corresponding locations with the field sites were traced on the SPOT image 

but, however, roads in the region are narrower than the 20 m spatial resolution of the imagery 

and thus, mixed pixels commonly occur on the imagery. The reflectance values at the road 

locations are not pure spectral values of roads but mixed with the response from the 

surrounding environment. In addition, in some cases the field site points were located on the 

edge of image pixels and thus it was not evident which pixel might be the proper road location 

pixel. In that case, the mean values of the two pixels were calculated but, however, the 

resultant reflectance value was then composed of impure spectral responses. 

 

Beforehand, the accuracy of the synthesising procedure was supposed to be only indicative,  

since the spectral and particularly spatial resolution characteristics of the SPOT data are not 

sufficient for the accurate discrimination of roads based on their spectral reflectance values. 

Therefore, it was assumed that there would be variation between the two datasets. 
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9 DISCUSSION 

In this chapter, the road infrastructure mapping is discussed on the grounds of the data, 

methodologies and analysis applied to this study. At the beginning, the  purpose of the thesis 

is summarised here from the viewpoint of how successfully the  five principal aims (see 

Section 1.2) were achieved. Thereafter, the possibilities, limits and applicability aspects are 

discussed more specifically with the attained results, accuracy assessment and previous 

research work. 

 

(1) The present state of the road transport in Kenya and in the Taita Hills was described 

fairly well by reviewing it extensively with the literature, background information and the 

experiences gained during the field work. The extent of road network varies according to 

regions from sparse to extensive but the condition of the road infrastructure is generally poor. 

It may also be argued that incongruities and absence of varying statistical information and 

map data - especially in terms of unclassified rural roads – cause uncertainties and 

questionablenesses to the results. Within the limits of this study it was not possible to acquire 

more knowledge of wider perspective, or data of larger scale and of longer period. 

 

(2) The meaning of the functional road transport in developing countries was defined clearly, 

but on a very general scale of Africa, SSA, Kenya and with more detail in the Taita Hills. 

Road transport is the dominant mode of transport, and in particular, rural roads and non-

motorised means of transport are most essential in local scale. Since Kenya is one of the most 

developed nations in SSA and the Taita Hills is an unique, to some extent favourable region, 

all results and conclusions of this study are not valid for every developing country at varying 

phase of development. 

 

(3) The possibilities of GIS and remote sensing (RS) in the road mapping of the Taita Hills 

were experimented, analysed and evaluated by different methods and data. Visual 

interpretation and digitisation of the aerial image mosaic was found the most accurate and 

best technique available. The object-oriented road extraction succeeded moderately - or even 

well in ideal circumstances without obfuscatory objects and with high contrast between roads 

and background - whereas the pixel-based method worked out worst of all tested approaches. 

Both digital approaches were seen inappropriate and too time-consuming to be further 

implemented to the road mapping.  
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As a consequence, (4) the mapping and updating of the Taita Hills road infrastructure were 

conducted by visual interpretation along with manual digitisation and road class definition. 

The road infrastructure mapping succeeded well and roads were detected and delineated 

accurately. Since visual interpretation is a subjective method which is practical to conduct 

with some degree of generalisation, inaccuracies may occur in road centreline locations and in 

road class definitions. In addition, the road mapping covers only extensively the area of the 

generated image mosaic, whereas the infrastructure of the surrounding regions were only 

modified with the attribute information but not spatially. 

 

(5) The strengths and weaknesses of the applied GIS and RS based methods in the more 

general context are discussed later in this chapter. Similar to the fulfilment of the second aim 

(see above) and due to the geographical peculiarities of the Taita Hills region, the results of 

the applied methodology and data are not entirely valid for every other regions of the 

developing world. However, the results may give general guidelines for the road 

infrastructure mapping in the developing countries. To summarise, the focal strength of the 

visual analysis is its accurateness and simplicity, whereas the digital methods are still fairly 

weak and inaccurate, although the segmentation-based road extraction may have potential for 

accurate road infrastructure mapping in different context. 

 

Next, the field spectrometry results are discussed with the existing information about the 

roads’ spectral characteristics based on a few existing spectral libraries (Ben-Dor et al. 2001; 

Herold et al. 2004). Figures 65 and 66 present spectra of typical urban materials representing 

roads composed of different materials and/or having different conditions. It should be noted 

that the graphs of the figures have slightly different scales and units with each other and with 

the applied methods of this thesis due to their different origins. For instance, in the graphs of 

the Figure 65 the spectral range is wider than the FieldSpec® measurements have. 

 

When comparing Figure 65 with the field spectra acquired in this study, it is noticed that the 

corresponding tarmac surfaces have similar reflectance with each other, the lowest overall 

values of all roads, and increasing reflectance with aging and/or poorer surface condition.  

The spectra of concrete surfaces differ more from each other, but this originates from different 

composition of concrete surfaces, and there was also a great variation between the two 

measured concrete field spectra (Sites 4 and 8). Concrete roads have generally high within-

class variability, and moreover, aging and poorer condition of the concrete results in 
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decreased reflectance (Noronha et al. 2002). The gravel roads of the study area have clearly 

higher reflectance compared to the spectral library spectrum (Figure 65). This may stem from 

the fact that the freshly maintained gravel roads of the Taita Hills are very light colour 

surfaces, in other words they are good reflectors. The composition may also differ from the 

construction material of the reference (spectral library) road. 

 

 

Figure 65. Spectra of typical road surfaces (left) and roads of different aging and condition 
(right) (Herold et al. 2004). 
 

When comparing the earth roads’ field spectra with the spectral libraries (Figure 66), it is 

noticed that the PUSH library reddish-brown soil surface spectrum (2757) matches fairly well 

with the field spectra of the various red-brown toned road surfaces. However, the field spectra 

values are at slightly higher level and with sharper increase of reflectance within the VIS 

green light region (0.50 – 0.60 µm). Furthermore, the field spectra are fairly similar with the 

CASILIB red-brown soil spectrum (25). In general, all spectra have typical soil spectrum 

shape: relatively low reflectance until the VIS green region from where it increases toward the 

red region. The relatively low reflectance of the red-brown colour earth roads compared with 

e.g. gravel roads of the Taita Hills stems from the composition of iron oxides and organic 

matter that give the dark colour for this soil as “colouring agents” (Ben-Dor et al. 2001). 

 

On the basis of the field spectra and spectral libraries investigation, it can be summarised that 

road surfaces which have different composition, aging and conditions, show spectral 

reflectance variations within the VIS-NIR spectral regions , although there are no identifiable 

peaks which occur generally. In this spectrum region urban surfaces, such as roads, hold 
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significant spectral fingerprints and this is likely to be sufficient for the discrimination of 

urban objects (Ben-Dor et al. 2001). 

 

 

Figure 66. The PUSH spectral library (left) of reddish-brown soil (2863), and the CASILIB 
spectral library (right) of red-brown sandy soil (25) (Ben-Dor et al. 2001). 
 

On the other hand, road surfaces have great variance in their spectral material separability and 

they may be confused them other land cover objects (Herold et al. 2004). Tarmac roads are 

spectrally similar to certain types of roof materials (Noronha et al. 2004). Furthermore, certain 

types of earth roads have similar spectral reflectance with bare soil surfaces. Current 

multispectral sensors are often limited to discriminate roads from their surrounding, since 

their spectral range does not entirely cover the locations of the optimal bands for urban 

mapping (Herold et al. 2004). 

 

Indeed, when considering the analysed SPOT pixel reflectance values, it is found that roads 

and their surroundings have very similar reflectance values, which makes the discrimination 

of roads and other land cover hardly possible, particularly due to the coarse spatial resolution 

of the SPOT image and the resultant mixed pixels relative to the size of the roads. The higher 

spatial resolution may improve the separability of roads, but however, certain road types may 

still get mixed with the land cover having a similar spectral response in VIS-NIR region. The 

object-based classification results and the spectral signature separability test between selected 

road types background objects show that road surfaces are poorly separable from certain 

background features, especially from bare ground and roofs due to their very similar spectral 

characteristics. Hyperspectral data may have potential for very detailed road discrimination, 

but these data and techniques are still under development and not operationally applicable in 

developing countries. 
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Hence, both spectral and spatial resolution characteristics of data are essential for the road 

detection. It is considered that the spatial resolution of the RS imagery has the priority in the 

road detection. Although the SPOT imagery data is adequate for general land cover studies, it 

has major drawbacks in the road mapping of the Taita Hills, since roads - as linear objects – 

are narrower than the spatial resolution of the imagery. Mixed pixels occur frequently in the 

imagery and road pixels do not get pure but disturbed spectral values from their surroundings. 

Consequently, the amount of pixels representing pure reflectance values of roads is minimal 

in the imagery. In addition, tree canopies cause obstruction from the sensor direction, and bare 

ground similar to natural road construction materials result in low contrast between roads and 

their background. The very same difficulties may arise in the aerial imagery, but not at as high 

volume. 

 

Pan-sharpened images are generally used for road mapping purposes, since they combine two 

essential elements required for detailed image interpretation. The colour information 

contained in the lower spatial resolution multispectral bands is merged with the geometrical 

information of the higher spatial resolution panchromatic band, and the result is a natural or 

false-colour pan-sharpened image having the spatial resolution of the panchromatic band. 

 

The combination of the 10 metre panchromatic band and multispectral bands image, so-called 

pan-sharpened image would possibly improve the performance of road detection and their 

discrimination from the densely vegetated surrounding land cover. In case of the Taita Hills, 

the SPOT sensor was able to discriminate hardly any of the roads in the highland areas, not 

even the wider main roads. The spatial resolution of the SPOT image is, however, to some 

degree sufficient for general road mapping in sparsely vegetated territories such as in the 

lowland areas (e.g. Tsavo plains) of this particular SPOT scene. On the other hand, in these 

dryer regions roads may get mixed with bare ground. In addition to the SPOT sensor, Landsat 

7 ETM+ has potential for general road detection purposes in developing countries, if its 

panchromatic band of 15 m spatial resolution is involved to the image analysis. Both sensors 

can offer relatively cost-effective data which are even obtainable in developing countries.  

 

Alternatively, aerial image mosaics data have major benefits in road mapping due to their 

outstanding discrimination capabilities and high spatial resolution characteristics. The applied 

aerial image mosaic achieved the general requirements of at least 5 metre spatial resolution 

for urban mapping (Jensen & Cowen 1999). On the other hand, generating of an image 

mosaic may be a laborious and time-consuming process, as it was in case of the Taita Hills 
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mosaic. Hence, it may be argued that it is not a cost-effective approach for general road 

mapping purposes in developing world. Besides, road mapping and updating is usually 

needed and implemented at large-scale business covering large territories and requiring 

extensive coverage of datasets. Therefore, very high spatial resolution satellite sensor, such as 

IKONOS or QuickBird would be suitable for these road mapping purposes, although the 

imagery are yet too expensive to be used other than in developed countries. On the other 

hand, Gianinetto (et al. 2004) emphasise that such imagery may offer a sustainable approach 

for mapping in developing countries. For small-scale purposes aerial image mosaics are 

generally the most practicable data source. 

 

In this study, the applied corrections and the mosaicking succeeded reasonably well, and the 

output mosaic is practicable for various purposes. The generated aerial image mosaic is 

consistent, geometrically accurate and spectrally at least of moderate quality, which was 

considered sufficient for the road detection purposes. In particular, the mosaic is feasible for 

visual examination of various land use and land cover themes that are important in the Taita 

Hills region. One key benefit of the mosaic is its large extent which offers possibilities for 

relatively large-scale examination of the region. At the same time, the high spatial resolution 

and adequate spectral resolution make possible accurate image interpretation tasks. However, 

the absence of NIR-band is one disadvantage especially for detailed forest studies (Lanne 

2007). In addition, NIR band is successful in the discrimination of man-made features and 

vegetation (Zhang & Couloigner 2006). The SPOT image involves the NIR band but for road 

detection the spatial resolution of the data was too coarse to benefit from the presence of the 

NIR band. 

 

On the other hand, the mosaic may be considered to have overly radiometric inaccuracies for 

digital analyses and to be of too large extent for effective use in GIS. More specific correction 

parameters for each band and individual “raw” image and for every land cover type and for 

that particular region would have been needed to attain better results in the pre-processing. In 

addition, mosaicking procedure could have been implemented by creating several small-sized 

mosaics but then the joining of these smaller “sub-mosaics” together may have been 

problematic. Hence, generating one extensive image mosaic with relatively general correction 

parameters was seen the most practicable solution within the limits and for the aims of this 

study. 
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On the grounds of the experience gained in this thesis, it can be stated that visual 

interpretation with manual digitisation and classification is still the most accurate, reliable and 

expeditious procedure to conduct a feasible road mapping and to create practical output data 

for the use in GIS. The visual analysis succeeded well and most roads in the mosaic area were 

mapped and classified accurately and according to various criteria. On the contrary, the 

applied digital classifications did not succeed as well, and it was possible to classify roads 

only based on their surface type. The purely pixel-based classification was rather rapid to 

implement but the results were poor, particularly in terms of having plenty of commission 

errors and the vector output was impracticable and of poor quality too.  

 

The object-oriented approach of eCognition was expected to have potential for more accurate 

detection of roads with the following road centreline extraction, conversion to practicable 

vector format and further completion by manual editing. In practice, the success was not that 

good and the initial concept had to be abandoned. Visual analysis and digitisation are 

generally considered as laborious, outdated techniques, but then eCognition’s segmentation-

based classification procedure is highly user-dependent and a time consuming task to 

implement without any prior knowledge of the software. It can be argued whether this 

procedure is automatic or semiautomatic, and more significantly, is it feasible to apply it to 

road mapping, if the traditional methods can be conducted more rapidly and with higher 

accuracy. 

 

Ultimately, it was possible to implement the fuzzy classification of eCognition with the 

membership functions so that the derived classification results were at least of moderate 

quality. The shape properties of the software were used to define road objects in the 

classification procedure and it succeeded at least to some degree. However, there were still a 

plenty of commission errors in the road categories, especially in the earth road class that was 

mixed with bare ground surfaces. In addition, buildings were mixed with the tarmac road 

class and smaller roads and paths were omitted to non-road category. 

 

Several studies underline the advantages of an object-oriented approach in road detection. 

Caprioli & Tarantino (2001) achieved overall accuracy over 90 % applying eCognition’s 

nearest neighbourhood classifier to very high resolution Quickbird multispectral imagery. 

Compared with the results of this study, the former seem overly optimistic. They were 

attained in a small test area of flat terrain, no disturbance of shadows, tree canopy, etc. 
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However, similarly with the results of this thesis, tarmac roads got mixed with roofs and earth 

roads with arable land.  

 

According to Hoffmann (2001b) there are several segmentation and classification possibilities 

for road detection in eCognition: pan-sharpening of IKONOS data enhances initial 

segmentation output by emphasising important boundaries, DEM improves urban area 

mapping, and shape properties can describe road objects in the classification. The last 

mentioned concept was attempted to exploit in this thesis. Various shape properties were used 

to determine elongated road objects of the segmentation output but these criteria – or spectral 

properties either - were not able to discriminate roads from other categories sufficiently. The 

initial problem in the whole procedure was that there were also elongated segments generated 

in the non-road class representing such objects as buildings and bare ground. Therefore, shape 

criteria could not be used effectively to describe and differentiate road classes. Spectral 

properties were not able to distinguish all road segments either since they had similar 

composition and/or spectral characteristics with other features. 

 

Repaka & Truax (2004) compared various spectral and object-based classification methods 

for road mapping from high resolution multispectral imagery. Similarly with the results of this 

study, they found that the use of membership functions improves the classification result from 

purely pixel-based supervised classification, and from object-based nearest neighbourhood 

(NN) classifier. In this study, the results of the maximum likelihood classification and the 

standard NN classification were fairly similar and of poor quality, but the Level 2 

classification results with membership functions showed obvious improvement from the first 

two classifications. However, plenty of narrower earth roads were still omitted to non-road 

class and non-road objects were also misclassified as roads. 

 

The road centreline extraction through generating skeletons in eCognition is a practicable 

technique to convert raster data to vector format. Since the classification results were of fairly 

poor quality, the centreline extraction did not succeed well. In places, the extraction 

succeeded moderately, mainly in terms of tarmac roads and wider earth roads, whereas only a 

minority of narrow earth roads were extracted. It may be argued that although the 

vectorisation process itself is a fairly simple technique to implement, it is highly dependent on 

the classification results and it should not be perceived as a fully automated process. In 

context of the heterogeneous land use and land cover of the Taita Hills, the vectorisation 
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output was rather useless, and much effort would have been needed to complete the vectorised 

skeleton layer into a feasible condition.  

 

It would be interesting to experiment with eCognition’s capabilities in a different context and 

compare the results with the results of this study. The auxiliary data layers and/or spectral 

bands would possibly improve classification results and moreover, a study area of different 

land use, land cover and road characteristics could bring about totally different segmentation, 

classification and vectorisation outputs and provide significant benefits in terms of saving 

time and effort in road mapping. In the context of this thesis, object-oriented approach was 

much slower to implement than visual analysis and digitisation. 

 

The special characteristics of the study area and the spatial and spectral resolution properties 

of the applied data determine the methods suitable for the road mapping of the Taita Hills. 

First of all, a majority of roads are earth roads composed of natural materials similar to other 

land use areas, such as bare ground and sparsely vegetated fields, whereas only a minority of 

all roads are tarmac ones – that were better separated in the digital analyses. Roads are 

generally narrow and most of them are either small tracks or paths running among the fields 

and vegetation and on the slopes of the hills. Secondly, the Taita Hills have generally very 

heterogeneous land use, abundant vegetation in the highlands and bare ground areas on the 

lowlands. These facts make the separation of roads extremely difficult in the digital analysis, 

since there is wide variation of both roads’ and their surroundings’ spectral characteristics, 

low contrast occurred between certain road types and their adjacent land use, and narrow 

tracks and paths are shadowed and/or covered by tree canopy and vegetation. Thirdly, 

although the spatial resolution of the applied aerial image mosaic is very high, the spectral 

resolution is not sufficient for accurate road extraction conducted by digital methods. 

 

As a consequence, the road infrastructure mapping of the Taita Hills was achieved with the 

visual interpretation, digitisation and classification that was the most reliable and rapid 

procedure to generate practicable road data of the region. Although the method is slightly 

subjective, the generated road data is considered to be very accurate, up-do-date and less 

generalised than the former dataset based on the generalised, partly outdated maps. 

 

As described in Section 7.5, there are evident changes in the extent of the road networks 

between the two dates (1991 and 2004) data. There are plenty more tracks and footpaths and 

the road network is generally denser in the 2004 map. The road network is much denser in the 
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highlands – the mosaic region – than in the surroundings. With the applied data, however, it is 

not possible to make definite conclusions on the real changes of the road infrastructure, since 

the changes stem from different reasons. On the one hand, real changes may have occurred, 

that is to say new roads constructed or paths formed. In the Taita Hills, the road network has 

extended in all likelihood, and it may be assumed that especially unclassified roads, tracks 

and paths have increased due to the growth and dispersion of the population during the last 

decades. On the other hand, the aerial photography (1988 – 1989) source data of the Kenya 

1:50 000 Topographic Map had probably lower resolutions and poorer quality than the 

current digital image mosaic has. Moreover, different degree of generalisations made during 

the topographic map creation and in this study may have had substantial influence on the 

differences occurred in the output maps. It should also be noted that the surroundings of the 

image mosaic region were not mapped or updated otherwise than adding the road 

administering and surface type attribute information to the data. 

 

In general, The Taita Hills have an extensive road infrastructure due to its peculiarities in 

geography and history, especially the favourable location, rich natural resources and abundant 

population. These facts have substantially influenced the development of the region and 

formed the present state of the road infrastructure. Moreover, road transport has different 

means and dimensions in the region, and this emphasises the importance of the functional 

road transport in the Taita Hills. 

 

It can be stated that the road transport of the Taita Hills have better prerequisites for success 

than have many other regions in Kenya and in other developing countries. Principally, this 

stems from the peculiarities mentioned above. At the same time, the special features of the 

Taita Hills – particularly physical geography and the heavy growth and dispersion of 

population – make the road construction, maintenance and development operations very 

challenging as well. 

 

Generally speaking, the road transport and the road infrastructure of the Taita Hills are in 

many ways similar to other rural areas of Kenya and other developing countries despite the 

influences of geography and other special features of the region. Several issues, that are valid 

for this case, may also be applied to more general context in the developing world. 

 

First of all, the majority of the road network is unclassified rural roads and tracks that form 

the base of local transport connections, provide framework for access and daily life operations 
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and are the most important transport services in the rural areas of the developing countries. A 

minority of all roads are classified trunk roads and other classified roads. In case of the Taita 

Hills, however, there are also several important classified road connections that provide 

transport services at different dimensions (Chapter 3.2). Therefore, it can be argued whether 

the Taita Hills is entirely a typical region to describe road transport patterns generally in the 

developing world. 

 

Secondly, road transport contributes most of all transport in the Taita Hills, and in particular, 

non-motorised modes of transport and certain public transport modes are the most important 

transport activities in the region. On the contrary, private cars are few in number and 

motorised road transport occurs to a substantially lesser degree than the various non-

motorised transport means. 

 

Thirdly, although the extent of road networks may vary greatly in different territories and 

regions or even within the divisions or areas of one region, the condition of road infrastructure 

is generally poor. In particular, the rural roads of the unclassified road network are of poor 

quality. Roads are even occasionally impassable by motor vehicles, which hinders, for 

example, access to basic services, trade and tourism. Consequently, the poor quality of road 

infrastructure is considered as a major drawback for effective transport connections and for 

social and economic development in the developing countries. The poor quality of roads is 

caused by different factors. Most of the road infrastructure is unpaved earth roads that are 

vulnerable to soil erosion, heavy rains and heavy traffic. On the contrary, only a minority of 

the total infrastructure is paved tarmac roads that are generally less vulnerable to damage and 

are more durable. The maintenance of earth roads is an inadequate level, since these roads do 

not usually take the first priory in the road sector policies and thus lack periodic maintenance 

operations. Moreover, geographical features such as topography, heavy rains, degradation of 

roads adjacent vegetation and increase of population and transport induce and increase the 

problem, and consequently, plenty of earth roads are deteriorated seasonally and in places. 

 

On the other hand, there were several maintenance operations planned, implemented or 

completed in the Taita Hills region during the research period. Various road administering 

agencies from national to district level actors and foreign parties were involved in the 

maintenance and improvement operations that mainly focused on the international and 

secondary roads. Less road maintenance operations were conducted on the classified minor 

roads and unclassified rural roads of the Taita Hills. In general, these roads have been 
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neglected in the road maintenance operations whereas national and regional transport 

connections have been improved more regularly.  

 

According to the results of this study, the unclassified rural roads are neither located and 

mapped accurately, since most of them were lacking from the topographic maps which were 

the source of the former vector data layer. The mapping of the Taita Hills road infrastructure 

demonstrated that although most of the main roads were actually present and even located 

fairly accurately in these former datasets, the unclassified rural roads were missing in many 

cases. This was due to different reasons, such as due to a real change occurred (a new road), 

poor quality of the aerial photography conducted for the topographic maps, or a high degree 

of generalisation from that aerial photography data. Regardless of reasons, it can be 

summarised that efficient methods are needed particularly for the mapping of unclassified 

rural roads in the developing countries. The comprehensive mapping of these roads would 

contribute to more effective management of the road sector, as the resources could then be 

allocated with more knowledge about the overall extent and condition of the road 

infrastructure including unclassified roads. The methods have to be simple and cost-effective 

and the data must have sufficient spatial and spectral resolution characteristics for the 

detection of these narrow, earth surface roads. Therefore, either very high spatial resolution 

satellite imagery or aerial image mosaics are required to implement accurate, up-to-date road 

mapping in the developing countries. 

 

10 CONCLUSIONS 

This Master’s Thesis has reviewed the present state and significance of road transport and 

road infrastructure in Sub-Saharan Africa, with an emphasis on Kenya and the Taita Hills 

region in particular. This Thesis has discussed the possibilities of remote sensing (RS) 

techniques and applicability of geographical information systems (GIS) in mapping of roads 

of for developing countries. The road transport and infrastructure of Kenya were studied on a 

general scale. Subsequently, the Taita Hills region was studied with more detail. The road 

infrastructure mapping was performed specifically in the Taita Hills region. This was carried 

out applying RS and GIS based methodology including existing map data, all the while 

considering possibilities and limits of the applied data and methods in more general context – 

applicability of road mapping in developing countries. 
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In order to perform practical road infrastructure mapping, various data types and formats 

along with different methods were experimented, evaluated and compared with each other. 

The best available and applicable data along with methods were then selected for the actual 

road infrastructure mapping process. In addition, the spectral reflectance characteristics of 

various road surfaces were considered and scrutinised. 

 

A high resolution digital image mosaic of the study area was generated with the appropriate 

radiometric and geometric corrections for the purpose of road infrastructure mapping. In 

addition, a SPOT 2003 satellite image was applied to the examination. Three image subsets 

were derived from the original image mosaic for trial procedures of the various image 

analysis techniques. The corresponding subset areas were interpreted visually from the SPOT 

image. The aerial image subsets were analysed by applying three different methods: visual 

interpretation including manual delineation, pixel-based supervised classification, and two 

different object-oriented supervised classification methods. The object-oriented raster 

classification results were processed further by a automatic conversion technique that 

transforms the appropriate pixels to skeletons representing road centrelines. Finally, the 

accuracy of the digital classification results and the skeleton outputs were assessed by various 

means. 

 

Out of all the tested methods the visual interpretation coupled with manual digitisation and 

classification was concluded to be the most accurate, straightforward and rapid technique for 

road extraction. The poorest results were attained by the pixel-based classifications and by the 

object-oriented nearest neighbourhood classification methods. Both of these methods had a 

substantial amount of commission errors in both predefined road classes. When applying 

membership functions, the results of the object-oriented classifications were substantially 

improved at moderate level, particularly in case of tarmac road class. 

 

The road centreline skeletons derived from the latter object-oriented classification in 

automatic vectorisation were of varying quality depending on the road class and subset area. 

While centrelines of the tarmac roads were represented fairly well by the skeletons, the earth 

road skeletons were of poorer quality. 

 

The actual road infrastructure mapping of the Taita Hills was performed by applying visual 

interpretation and manual digitisation. All roads were delineated on the image mosaic area 

given various attribute information to categorise them according to map classes, 
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administrating classes and surface types. In particular, plenty of “new” unclassified rural 

roads were digitised when compared with the old map and vector data. 

 

The spectral reflectance characteristics of roads were investigated through the field 

spectrometry measurements, the synthesised SPOT reflectance response and a few existing 

spectral libraries of the reference literature. It was considered that roads of different 

composition, aging and conditions have great spectral reflectance variations within the VIS-

NIR spectral region. In addition, it was noted that certain road surfaces within the Taita Hills 

region have similar spectral characteristics to their surroundings. 

 

To summarise, road infrastructure mapping in the Taita Hills region - generalised along with 

the results of this study - in developing countries is a considerably challenging endeavour. 

These challenges area highlighted by issues such as the need for either high or very high 

resolution data and simple, cost-effective methods and the lack of reliable updated road 

infrastructure reference maps. Adding to these challenges is the fact that a majority of roads is 

narrow roads or paths composed of natural materials, which are easily mixed with other land 

use or land cover types with similar spectral characteristics. In addition, shadows and 

disturbance caused by rich vegetation cover creates difficulties in detecting roads from 

remotely sensed imagery.  

 

In particular, unclassified rural roads and other minor roads, tracks and paths of rural areas 

have not been mapped accurately yet, and there is a need for effective road infrastructure 

mapping. Extensive mapping and accurate information would possibly contribute more funds 

and priority for the management of unclassified road network. Therefore, appropriate data and 

reliable methods are needed for a successful road infrastructure mapping schema for the 

developing countries. 
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Appendix 1. The field spectrometry sites in the Taita Hills region. 



 

 

APPENDIX 2 

 

 

Appendix 2. The pixel based classification (top), the Level 1 object-oriented classification 
(middle) and the Level 2 object-oriented classification (bottom) of Mwatate. 
 



 

 

APPENDIX 3 

 

 
Appendix 3. The pixel based classification (top), the Level 1 object-oriented classification 
(middle) and the Level 2 object-oriented classification (bottom) of Dembwa. 
 

 



 

 

APPENDIX 4 

 

 
Appendix 4. The pixel based classification (left), the Level 1 object-oriented classification 
(middle) and the Level 2 object-oriented classification (right) of Wundanyi. 

 

 



 

 

APPENDIX 5 

 

 
Appendix 5. The road infrastructure of the Taita Hills by the topographic map classification in 
1991 (left) and 2004 (right). 
 

 



 

 

APPENDIX 6 

 

 
Appendix 6. The road infrastructure of the Taita Hills by the administering classification in 
2004. 

 

 



 

 

APPENDIX 7 

 

 
Appendix 7. The road infrastructure of the Taita Hills by the surface type in 2004. 

 

 



 

 

APPENDIX 8 

 

 
Appendix 8. The road infrastructure of the Taita Hills and the surrounding regions by the 
topographic map classification. The SPOT 2003 image is shown in the background. 

 

 



 

 

APPENDIX 9 

 

 
Appendix 9. The road infrastructure of the Taita Hills and the surrounding regions by the 
administering classification. The SPOT 2003 image is shown in the background. 

 

 



 

 

APPENDIX 10 

 
Site 1
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 12.6525 1.08540891 11.885 13.42 Band 1 10.9241
Band 2 20.644 1.55280649 19.546 21.742 Band 2 20.6940
Band 3 31.9925 2.1899097 30.444 33.541 Band 3 26.7594

Site 2
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 9.9875 0.00212132 9.986 9.989 Band 1 6.7506
Band 2 16.485 0.00424264 16.482 16.488 Band 2 14.4154
Band 3 29.184 0.32244069 28.956 29.412 Band 3 18.3850

Site 3
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 11.3915 1.52522933 10.313 12.47 Band 1 43.1160
Band 2 18.184 3.40684047 15.775 20.593 Band 2 54.8444
Band 3 31.9225 2.8362053 33.928 29.917 Band 3 62.1026

Site 4
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 18.143 2.40557727 16.442 19.844 Band 1 40.8286
Band 2 27.155 0.54022958 26.773 27.537 Band 2 51.8467
Band 3 35.6135 2.54346309 33.815 37.412 Band 3 58.6595

Site 5
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 10.595 0.271529 10.403 10.787 Band 1 0.2355
Band 2 13.304 1.09318708 12.531 14.077 Band 2 0.2177
Band 3 24.308 0.19233304 24.444 24.172 Band 3 0.3714

Site 6
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 10.1835 0.20293965 10.04 10.327 Band 1 13.6294
Band 2 14.7065 0.50275292 14.351 15.062 Band 2 23.4042
Band 3 25.9545 0.03747666 25.981 25.928 Band 3 30.8806

Site 7
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 28.435 3.24703434 26.139 30.731 Band 1 37.3974
Band 2 36.603 2.32638131 34.958 38.248 Band 2 45.0722
Band 3 39.1035 4.0665711 36.228 41.979 Band 3 49.3313

 

Appendix 10. Comparison of the SPOT 2003 image pixel reflectance values and the 
synthesised SPOT reflectance response of the field spectrometry measurements, Sites 1 – 7. 
 

 

 

 



 

 

APPENDIX 11 

 
Site 8
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 14.8045 2.44163972 13.078 16.531 Band 1 18.7800
Band 2 17.9605 3.67624816 15.361 20.56 Band 2 23.3028
Band 3 34.061 1.41421356 33.061 35.061 Band 3 25.8199

Site 9
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 14.939 2.25567063 13.344 16.534 Band 1 20.5618
Band 2 16.886 5.32027142 13.124 20.648 Band 2 26.7273
Band 3 35.471 2.41123412 33.766 37.176 Band 3 35.7223

Site 10
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 13.508 0 Band 1 23.5928
Band 2 15.885 0 Band 2 32.7120
Band 3 35.596 0 Band 3 38.2058

Site 11
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 10.3485 0.43345646 10.042 10.655 Band 1 9.4712
Band 2 19.4065 1.32582521 18.469 20.344 Band 2 22.8461
Band 3 28.9415 0.34011836 28.701 29.182 Band 3 29.9624

Site 12
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 15.1825 0.00070711 15.182 15.183 Band 1 10.6859
Band 2 21.1955 0.5211377 20.827 21.564 Band 2 12.4840
Band 3 28.8545 1.25935718 27.964 29.745 Band 3 12.8935

Site 13
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 13.678 0.43557778 13.37 13.986 Band 1 10.5944
Band 2 16.6545 0.2609224 16.839 16.47 Band 2 11.8199
Band 3 24.032 0 24.032 24.032 Band 3 12.3623

Site 14
SPOT 2003 Image Pixel Values Synthesised SPOT Reflectance Response

Mean Std Min Max
Band 1 11.793 0 Band 1 8.5291
Band 2 20.442 0 Band 2 9.9245
Band 3 28.388 0 Band 3 10.1246  

Appendix 11. Comparison of the SPOT 2003 image pixel reflectance values and the 
synthesised SPOT reflectance response of the field spectrometry measurements, Sites 8 – 14. 

 

 

 

 



 

 

APPENDIX 12 

 
Site 1 Site 1 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 12.653 1.085 11.885 13.420 Band 1 14.345 12.198
Band 2 20.644 1.553 19.546 21.742 Band 2 21.723 20.699
Band 3 31.993 2.190 30.444 33.541 Band 3 36.665 29.608

Site 2 Site 2 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 9.988 0.002 9.986 9.989 Band 1 9.983 10.300
Band 2 16.485 0.004 16.482 16.488 Band 2 16.477 16.124
Band 3 29.184 0.322 28.956 29.412 Band 3 28.948 28.976

Site 3 Site 3 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 11.392 1.525 10.313 12.470 Band 1 10.619 14.632
Band 2 18.184 3.407 15.775 20.593 Band 2 14.292 18.363
Band 3 31.923 2.836 33.928 29.917 Band 3 27.216 30.344

Site 4 Site 4 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 18.143 2.406 16.442 19.844 Band 1 11.206 16.143
Band 2 27.155 0.540 26.773 27.537 Band 2 18.300 20.157
Band 3 35.614 2.543 33.815 37.412 Band 3 30.254 33.394

Site 5 Site 5 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 10.595 0.272 10.403 10.787 Band 1 7.801 10.080
Band 2 13.304 1.093 12.531 14.077 Band 2 10.171 13.584
Band 3 24.308 0.192 24.444 24.172 Band 3 21.739 24.826

Site 6 Site 6 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 10.184 0.203 10.040 10.327 Band 1 8.836 12.467
Band 2 14.707 0.503 14.351 15.062 Band 2 12.178 16.878
Band 3 25.955 0.037 25.981 25.928 Band 3 25.191 28.101

Site 7 Site 7 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 28.435 3.247 26.139 30.731 Band 1 28.914 19.392
Band 2 36.603 2.326 34.958 38.248 Band 2 35.356 27.262
Band 3 39.104 4.067 36.228 41.979 Band 3 44.225 27.804

 

Appendix 12. Comparison of the SPOT 2003 image road pixel reflectance values and two 
surrounding pixels reflectance values, Sites 1- 7. 
 



 

 

APPENDIX 13 

 
Site 8 Site 8 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 14.805 2.442 13.078 16.531 Band 1 14.093 12.267
Band 2 17.961 3.676 15.361 20.560 Band 2 19.224 16.917
Band 3 34.061 1.414 33.061 35.061 Band 3 33.691 29.332

Site 9 Site 9 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 14.939 2.256 13.344 16.534 11.882 9.948
Band 2 16.886 5.320 13.124 20.648 Band 2 15.439 12.371
Band 3 35.471 2.411 33.766 37.176 Band 3 29.074 31.061

Site 10 Site 10 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 13.508 0.000 Band 1 11.964 10.766
Band 2 15.885 0.000 Band 2 15.127 12.243
Band 3 35.596 0.000 Band 3 34.208 35.547

Site 11 Site 11 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 10.349 0.433 10.042 10.655 Band 1 9.444 9.098
Band 2 19.407 1.326 18.469 20.344 Band 2 18.529 14.707
Band 3 28.942 0.340 28.701 29.182 Band 3 29.682 25.059

Site 12 Site 12 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 15.183 0.001 15.182 15.183 Band 1 16.723 13.338
Band 2 21.196 0.521 20.827 21.564 Band 2 21.568 19.724
Band 3 28.855 1.259 27.964 29.745 Band 3 28.416 29.743

Site 13 Site 13 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 13.678 0.436 13.370 13.986 Band 1 10.901 10.907
Band 2 16.655 0.261 16.839 16.470 Band 2 13.516 13.893
Band 3 24.032 0.000 24.032 24.032 Band 3 24.024 24.485

Site 14 Site 14 Surrounding
SPOT 2003 Image Pixel Values SPOT 2003 Image Pixel Values

Mean Std Min Max Pixel 1 Pixel 2
Band 1 11.793 0.000 Band 1 9.953 13.640
Band 2 20.442 0.000 Band 2 17.496 21.184
Band 3 28.388 0.000 Band 3 26.151 29.286  

Appendix 13. Comparison of the SPOT 2003 image road pixel reflectance values and two 
surrounding pixels reflectance values, Sites 8 – 14. 


